These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 20453331)

  • 1. TiO(2)-assisted photocatalytic degradation of humic acids: effect of copper ions.
    Uyguner CS; Bekbolet M
    Water Sci Technol; 2010; 61(10):2581-90. PubMed ID: 20453331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of calcium ions in the photocatalytic oxidation of humic acid at neutral pH.
    Mariquit EG; Salim C; Hinode H
    Ann N Y Acad Sci; 2008 Oct; 1140():389-93. PubMed ID: 18991939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO(2) under UV light.
    Zhang L; Li P; Gong Z; Li X
    J Hazard Mater; 2008 Oct; 158(2-3):478-84. PubMed ID: 18372106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalytic oxidation technology for humic acid removal using a nano-structured TiO2/Fe2O3 catalyst.
    Qiao S; Sun DD; Tay JH; Easton C
    Water Sci Technol; 2003; 47(1):211-7. PubMed ID: 12578197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic and photoelectrocatalytic humic acid removal and selectivity of TiO(2) coated photoanode.
    Selcuk H; Bekbolet M
    Chemosphere; 2008 Oct; 73(5):854-8. PubMed ID: 18621411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergy between surface adsorption and photocatalysis during degradation of humic acid on TiO2/activated carbon composites.
    Xue G; Liu H; Chen Q; Hills C; Tyrer M; Innocent F
    J Hazard Mater; 2011 Feb; 186(1):765-72. PubMed ID: 21163573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on the photocatalytic degradation of pyrene on soil surfaces using nanometer anatase TiO2 under UV irradiation.
    Dong D; Li P; Li X; Zhao Q; Zhang Y; Jia C; Li P
    J Hazard Mater; 2010 Feb; 174(1-3):859-63. PubMed ID: 19850410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous photocatalytic degradation of monochlorobenzene in water.
    Huang HH; Tseng DH; Juang LC
    J Hazard Mater; 2008 Aug; 156(1-3):186-93. PubMed ID: 18215461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption kinetics and desorption of Cu(II) and Zn(II) from aqueous solution onto humic acid.
    Li Y; Yue Q; Gao B
    J Hazard Mater; 2010 Jun; 178(1-3):455-61. PubMed ID: 20149528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of Cr(VI) and humic acid by using TiO2 photocatalysis.
    Yang JK; Lee SM
    Chemosphere; 2006 Jun; 63(10):1677-84. PubMed ID: 16325231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the photocatalytic degradation of glyphosate by TiO(2) photocatalyst.
    Chen S; Liu Y
    Chemosphere; 2007 Mar; 67(5):1010-7. PubMed ID: 17156814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocatalytic oxidation of toxic organohalides with TiO2/UV: the effects of humic substances and organic mixtures.
    Lin C; Lin KS
    Chemosphere; 2007 Jan; 66(10):1872-7. PubMed ID: 17084883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of hypochlorite ion and humic acid: photolytic and photocatalytic pathways.
    Gonenç D; Bekbolet M
    Water Sci Technol; 2001; 44(5):205-10. PubMed ID: 11695460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments.
    Jain R; Mathur M; Sikarwar S; Mittal A
    J Environ Manage; 2007 Dec; 85(4):956-64. PubMed ID: 17239520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An innovative photocatalytic technology in the treatment of river water containing humic substances.
    Selcuk H; Sene JJ; Sarikaya HZ; Bekbolet M; Anderson MA
    Water Sci Technol; 2004; 49(4):153-8. PubMed ID: 15077964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of erbium on the adsorption and photodegradation of orange I in aqueous Er3+-TiO2 suspension.
    Liang CH; Hou MF; Zhou SG; Li FB; Liu CS; Liu TX; Gao YX; Wang XG; Lü JL
    J Hazard Mater; 2006 Dec; 138(3):471-8. PubMed ID: 16843594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and equilibrium of desorption removal of copper from magnetic polymer adsorbent.
    Tseng JY; Chang CY; Chang CF; Chen YH; Chang CC; Ji DR; Chiu CY; Chiang PC
    J Hazard Mater; 2009 Nov; 171(1-3):370-7. PubMed ID: 19595507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of pH on solar photocatalytic reduction and deposition of Cu(II), Ni(II), Pb(II) and Zn(II): speciation modeling and reaction kinetics.
    Kabra K; Chaudhary R; Sawhney RL
    J Hazard Mater; 2007 Nov; 149(3):680-5. PubMed ID: 17532120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a novel Cu₂O/TiO₂/carbon aerogel electrode and its efficient electrosorption-assisted visible light photocatalytic degradation of 2,4,6-trichlorophenol.
    Wang Y; Zhang YN; Zhao G; Tian H; Shi H; Zhou T
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3965-72. PubMed ID: 22780307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capability of coupled CdSe/TiO(2) for photocatalytic degradation of 4-chlorophenol.
    Lo SC; Lin CF; Wu CH; Hsieh PH
    J Hazard Mater; 2004 Oct; 114(1-3):183-90. PubMed ID: 15511590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.