BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 20453856)

  • 1. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation.
    Ghosh S; Bachilo SM; Weisman RB
    Nat Nanotechnol; 2010 Jun; 5(6):443-50. PubMed ID: 20453856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High precision fractionator for use with density gradient ultracentrifugation.
    Kadria-Vili Y; Canning G; Bachilo SM; Weisman RB
    Anal Chem; 2014 Nov; 86(22):11018-23. PubMed ID: 25325436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation.
    Green AA; Hersam MC
    Adv Mater; 2011 May; 23(19):2185-90. PubMed ID: 21472798
    [No Abstract]   [Full Text] [Related]  

  • 4. Single Chirality (6,4) Single-Walled Carbon Nanotubes for Fluorescence Imaging with Silicon Detectors.
    Antaris AL; Yaghi OK; Hong G; Diao S; Zhang B; Yang J; Chew L; Dai H
    Small; 2015 Dec; 11(47):6325-30. PubMed ID: 26529611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman Optical Activity Spectra of Single-Walled Carbon Nanotube Enantiomers.
    Magg M; Kadria-Vili Y; Oulevey P; Weisman RB; Bürgi T
    J Phys Chem Lett; 2016 Jan; 7(2):221-5. PubMed ID: 26709444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Narrow diameter distributions of metallic arc discharge single-walled carbon nanotubes via dual-iteration density gradient ultracentrifugation.
    Tyler TP; Shastry TA; Leever BJ; Hersam MC
    Adv Mater; 2012 Sep; 24(35):4765-8. PubMed ID: 22833215
    [No Abstract]   [Full Text] [Related]  

  • 7. Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: the power of polymer wrapping.
    Samanta SK; Fritsch M; Scherf U; Gomulya W; Bisri SZ; Loi MA
    Acc Chem Res; 2014 Aug; 47(8):2446-56. PubMed ID: 25025887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress towards monodisperse single-walled carbon nanotubes.
    Hersam MC
    Nat Nanotechnol; 2008 Jul; 3(7):387-94. PubMed ID: 18654561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Single-Walled Carbon Nanotubes in Estuarine Sediments by Density Gradient Ultracentrifugation Coupled to Near-Infrared Fluorescence Spectroscopy Reveals Disassociation of Residual Metal Catalyst Nanoparticles.
    Montaño MD; Liu K; Sabo-Attwood T; Ferguson PL
    Environ Sci Technol; 2021 Jan; 55(2):1015-1023. PubMed ID: 33373200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enrichment of single-walled carbon nanotubes by diameter in density gradients.
    Arnold MS; Stupp SI; Hersam MC
    Nano Lett; 2005 Apr; 5(4):713-8. PubMed ID: 15826114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution-phase extraction of ultrathin inner shells from double-wall carbon nanotubes.
    Miyata Y; Suzuki M; Fujihara M; Asada Y; Kitaura R; Shinohara H
    ACS Nano; 2010 Oct; 4(10):5807-12. PubMed ID: 20828183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties and application of double-walled carbon nanotubes sorted by outer-wall electronic type.
    Green AA; Hersam MC
    ACS Nano; 2011 Feb; 5(2):1459-67. PubMed ID: 21280609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorting Carbon Nanotubes.
    Zheng M
    Top Curr Chem (Cham); 2017 Feb; 375(1):13. PubMed ID: 28083771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying the semiconducting fraction in single-walled carbon nanotube samples through comparative atomic force and photoluminescence microscopies.
    Naumov AV; Kuznetsov OA; Harutyunyan AR; Green AA; Hersam MC; Resasco DE; Nikolaev PN; Weisman RB
    Nano Lett; 2009 Sep; 9(9):3203-8. PubMed ID: 19640001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral-angle distribution for separated single-walled carbon nanotubes.
    Sato Y; Yanagi K; Miyata Y; Suenaga K; Kataura H; Iijima S
    Nano Lett; 2008 Oct; 8(10):3151-4. PubMed ID: 18729412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotube separation by electronic type using a single surfactant-based density-induced separation method.
    Choi H; Yoon WJ; Yang H; Kim WJ
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9165-8. PubMed ID: 25971030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enrichment of armchair carbon nanotubes via density gradient ultracentrifugation: Raman spectroscopy evidence.
    Hároz EH; Rice WD; Lu BY; Ghosh S; Hauge RH; Weisman RB; Doorn SK; Kono J
    ACS Nano; 2010 Apr; 4(4):1955-62. PubMed ID: 20302343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic/hybrid nanoparticles and single-walled carbon nanotubes: preparation methods and chiral applications.
    Alhassen H; Antony V; Ghanem A; Yajadda MM; Han ZJ; Ostrikov KK
    Chirality; 2014 Nov; 26(11):683-91. PubMed ID: 24811353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of surfactants in carbon nanotubes density gradient separation.
    Carvalho EJ; dos Santos MC
    ACS Nano; 2010 Feb; 4(2):765-70. PubMed ID: 20055484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorting carbon nanotubes by electronic structure using density differentiation.
    Arnold MS; Green AA; Hulvat JF; Stupp SI; Hersam MC
    Nat Nanotechnol; 2006 Oct; 1(1):60-5. PubMed ID: 18654143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.