BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20453862)

  • 1. Reconstruction of the saframycin core scaffold defines dual Pictet-Spengler mechanisms.
    Koketsu K; Watanabe K; Suda H; Oguri H; Oikawa H
    Nat Chem Biol; 2010 Jun; 6(6):408-10. PubMed ID: 20453862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pictet-Spenglerase involved in tetrahydroisoquinoline antibiotic biosynthesis.
    Koketsu K; Minami A; Watanabe K; Oguri H; Oikawa H
    Curr Opin Chem Biol; 2012 Apr; 16(1-2):142-9. PubMed ID: 22409961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Pictet-Spengler mechanism involved in the biosynthesis of tetrahydroisoquinoline antitumor antibiotics: a novel function for a nonribosomal peptide synthetase.
    Koketsu K; Minami A; Watanabe K; Oguri H; Oikawa H
    Methods Enzymol; 2012; 516():79-98. PubMed ID: 23034225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemo-enzymatic Total Syntheses of Jorunnamycin A, Saframycin A, and N-Fmoc Saframycin Y3.
    Tanifuji R; Koketsu K; Takakura M; Asano R; Minami A; Oikawa H; Oguri H
    J Am Chem Soc; 2018 Aug; 140(34):10705-10709. PubMed ID: 30113836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric total synthesis of (-)-saframycin A from L-tyrosine.
    Dong W; Liu W; Liao X; Guan B; Chen S; Liu Z
    J Org Chem; 2011 Jul; 76(13):5363-8. PubMed ID: 21612294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core assembly mechanism of quinocarcin/SF-1739: bimodular complex nonribosomal peptide synthetases for sequential mannich-type reactions.
    Hiratsuka T; Koketsu K; Minami A; Kaneko S; Yamazaki C; Watanabe K; Oguri H; Oikawa H
    Chem Biol; 2013 Dec; 20(12):1523-35. PubMed ID: 24269153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regioselectivity of Pictet-Spengler Cyclization Reactions to Construct the Pentacyclic Frameworks of the Ecteinascidin-Saframycin Class of Tetrahydroisoquinoline Antitumor Antibiotics.
    Vincent G; Lane JW; Williams RM
    Tetrahedron Lett; 2007 May; 48(21):3719-3722. PubMed ID: 19578531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step construction of the pentacyclic skeleton of saframycin A from a "Trimer" of alpha-amino aldehydes.
    Myers AG; Kung DW
    Org Lett; 2000 Sep; 2(19):3019-22. PubMed ID: 10986097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthetic studies on saframycin A, a quinone antitumor antibiotic produced by Streptomyces lavendulae.
    Mikami Y; Takahashi K; Yazawa K; Arai T; Namikoshi M; Iwasaki S; Okuda S
    J Biol Chem; 1985 Jan; 260(1):344-8. PubMed ID: 3880741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalysis of Extracellular Deamination by a FAD-Linked Oxidoreductase after Prodrug Maturation in the Biosynthesis of Saframycin A.
    Song LQ; Zhang YY; Pu JY; Tang MC; Peng C; Tang GL
    Angew Chem Int Ed Engl; 2017 Jul; 56(31):9116-9120. PubMed ID: 28561936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of saframycins. X. Transformation of (-)-saframycin A to (-)-saframycin Mx type compound with the structure proposed for saframycin E.
    Saito N; Harada S; Nishida M; Inouye I; Kubo A
    Chem Pharm Bull (Tokyo); 1995 May; 43(5):777-82. PubMed ID: 7553964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric synthesis and cytotoxicity of (-)-saframycin A analogues.
    Dong W; Liu W; Yan Z; Liao X; Guan B; Wang N; Liu Z
    Eur J Med Chem; 2012 Mar; 49():239-44. PubMed ID: 22284268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directed biosynthesis of new saframycin derivatives with resting cells of Streptomyces lavendulae.
    Arai T; Yazawa K; Takahashi K; Maeda A; Mikami Y
    Antimicrob Agents Chemother; 1985 Jul; 28(1):5-11. PubMed ID: 3839995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioselective synthesis of saframycin A and evaluation of antitumor activity relative to ecteinascidin/saframycin hybrids.
    Martinez EJ; Corey EJ
    Org Lett; 1999 Jul; 1(1):75-7. PubMed ID: 10822537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the saframycin A gene cluster from Streptomyces lavendulae NRRL 11002 revealing a nonribosomal peptide synthetase system for assembling the unusual tetrapeptidyl skeleton in an iterative manner.
    Li L; Deng W; Song J; Ding W; Zhao QF; Peng C; Song WW; Tang GL; Liu W
    J Bacteriol; 2008 Jan; 190(1):251-63. PubMed ID: 17981978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Total synthesis of novel 6-substituted lavendamycin antitumor agents.
    Seradj H; Cai W; Erasga NO; Chenault DV; Knuckles KA; Ragains JR; Behforouz M
    Org Lett; 2004 Feb; 6(4):473-6. PubMed ID: 14961601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional cross-talk between fatty acid synthesis and nonribosomal peptide synthesis in quinoxaline antibiotic-producing streptomycetes.
    Schmoock G; Pfennig F; Jewiarz J; Schlumbohm W; Laubinger W; Schauwecker F; Keller U
    J Biol Chem; 2005 Feb; 280(6):4339-49. PubMed ID: 15569690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Discovery and development of unknown potentialities of microorganisms with special reference to saframycin group antitumor antibiotics].
    Arai T
    Gan To Kagaku Ryoho; 1984 Dec; 11(12 Pt 2):2617-24. PubMed ID: 6508318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A solid-supported, enantioselective synthesis suitable for the rapid preparation of large numbers of diverse structural analogues of (-)-saframycin A.
    Myers AG; Lanman BA
    J Am Chem Soc; 2002 Nov; 124(44):12969-71. PubMed ID: 12405822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased production of saframycin A and isolation of saframycin S.
    Arai T; Takahashi K; Ishiguro K; Yazawa K
    J Antibiot (Tokyo); 1980 Sep; 33(9):951-60. PubMed ID: 7440416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.