These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 20453888)
1. A novel interaction between HER2/neu and cyclin E in breast cancer. Mittendorf EA; Liu Y; Tucker SL; McKenzie T; Qiao N; Akli S; Biernacka A; Liu Y; Meijer L; Keyomarsi K; Hunt KK Oncogene; 2010 Jul; 29(27):3896-907. PubMed ID: 20453888 [TBL] [Abstract][Full Text] [Related]
2. Antitumoral actions of the anti-obesity drug orlistat (XenicalTM) in breast cancer cells: blockade of cell cycle progression, promotion of apoptotic cell death and PEA3-mediated transcriptional repression of Her2/neu (erbB-2) oncogene. Menendez JA; Vellon L; Lupu R Ann Oncol; 2005 Aug; 16(8):1253-67. PubMed ID: 15870086 [TBL] [Abstract][Full Text] [Related]
3. Targeting the MUC1-C oncoprotein downregulates HER2 activation and abrogates trastuzumab resistance in breast cancer cells. Raina D; Uchida Y; Kharbanda A; Rajabi H; Panchamoorthy G; Jin C; Kharbanda S; Scaltriti M; Baselga J; Kufe D Oncogene; 2014 Jun; 33(26):3422-31. PubMed ID: 23912457 [TBL] [Abstract][Full Text] [Related]
4. FOXO1A is a target for HER2-overexpressing breast tumors. Wu Y; Shang X; Sarkissyan M; Slamon D; Vadgama JV Cancer Res; 2010 Jul; 70(13):5475-85. PubMed ID: 20551062 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of the p27Kip1-mediated antiproliferative effect of trastuzumab (Herceptin) on HER2-overexpressing tumor cells. Marches R; Uhr JW Int J Cancer; 2004 Nov; 112(3):492-501. PubMed ID: 15382077 [TBL] [Abstract][Full Text] [Related]
6. LMW-E/CDK2 deregulates acinar morphogenesis, induces tumorigenesis, and associates with the activated b-Raf-ERK1/2-mTOR pathway in breast cancer patients. Duong MT; Akli S; Wei C; Wingate HF; Liu W; Lu Y; Yi M; Mills GB; Hunt KK; Keyomarsi K PLoS Genet; 2012; 8(3):e1002538. PubMed ID: 22479189 [TBL] [Abstract][Full Text] [Related]
7. Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2+ breast cancer patients. Scaltriti M; Eichhorn PJ; Cortés J; Prudkin L; Aura C; Jiménez J; Chandarlapaty S; Serra V; Prat A; Ibrahim YH; Guzmán M; Gili M; Rodríguez O; Rodríguez S; Pérez J; Green SR; Mai S; Rosen N; Hudis C; Baselga J Proc Natl Acad Sci U S A; 2011 Mar; 108(9):3761-6. PubMed ID: 21321214 [TBL] [Abstract][Full Text] [Related]
8. Anti-HER2 antibody trastuzumab inhibits CDK2-mediated NPAT and histone H4 expression via the PI3K pathway. Le XF; Bedrosian I; Mao W; Murray M; Lu Z; Keyomarsi K; Lee MH; Zhao J; Bast RC Cell Cycle; 2006 Aug; 5(15):1654-61. PubMed ID: 16861913 [TBL] [Abstract][Full Text] [Related]
9. Roles of human epidermal growth factor receptor 2, c-jun NH2-terminal kinase, phosphoinositide 3-kinase, and p70 S6 kinase pathways in regulation of cyclin G2 expression in human breast cancer cells. Le XF; Arachchige-Don AS; Mao W; Horne MC; Bast RC Mol Cancer Ther; 2007 Nov; 6(11):2843-57. PubMed ID: 18025271 [TBL] [Abstract][Full Text] [Related]
11. Effect of multikinase inhibitors on caspase-independent cell death and DNA damage in HER2-overexpressing breast cancer cells. Seoane S; Montero JC; Ocaña A; Pandiella A J Natl Cancer Inst; 2010 Sep; 102(18):1432-46. PubMed ID: 20811002 [TBL] [Abstract][Full Text] [Related]
13. Overcoming trastuzumab resistance in HER2-overexpressing breast cancer cells by using a novel celecoxib-derived phosphoinositide-dependent kinase-1 inhibitor. Tseng PH; Wang YC; Weng SC; Weng JR; Chen CS; Brueggemeier RW; Shapiro CL; Chen CY; Dunn SE; Pollak M; Chen CS Mol Pharmacol; 2006 Nov; 70(5):1534-41. PubMed ID: 16887935 [TBL] [Abstract][Full Text] [Related]
14. Modulation of p27/Cdk2 complex formation through 4D5-mediated inhibition of HER2 receptor signaling. Lane HA; Motoyama AB; Beuvink I; Hynes NE Ann Oncol; 2001; 12 Suppl 1():S21-2. PubMed ID: 11521716 [TBL] [Abstract][Full Text] [Related]
15. Specific blockade of VEGF and HER2 pathways results in greater growth inhibition of breast cancer xenografts that overexpress HER2. Le XF; Mao W; Lu C; Thornton A; Heymach JV; Sood AK; Bast RC Cell Cycle; 2008 Dec; 7(23):3747-58. PubMed ID: 19029832 [TBL] [Abstract][Full Text] [Related]
16. HER2 (erbB-2)-targeted effects of the omega-3 polyunsaturated fatty acid, alpha-linolenic acid (ALA; 18:3n-3), in breast cancer cells: the "fat features" of the "Mediterranean diet" as an "anti-HER2 cocktail". Menéndez JA; Vázquez-Martín A; Ropero S; Colomer R; Lupu R Clin Transl Oncol; 2006 Nov; 8(11):812-20. PubMed ID: 17134970 [TBL] [Abstract][Full Text] [Related]
17. Trastuzumab-resistant HER2-driven breast cancer cells are sensitive to epigallocatechin-3 gallate. Eddy SF; Kane SE; Sonenshein GE Cancer Res; 2007 Oct; 67(19):9018-23. PubMed ID: 17909003 [TBL] [Abstract][Full Text] [Related]
18. Antitumor activity of a monoclonal antibody targeting major histocompatibility complex class I-Her2 peptide complexes. Jain R; Rawat A; Verma B; Markiewski MM; Weidanz JA J Natl Cancer Inst; 2013 Feb; 105(3):202-18. PubMed ID: 23300219 [TBL] [Abstract][Full Text] [Related]
19. Prolyl isomerase Pin1 is highly expressed in Her2-positive breast cancer and regulates erbB2 protein stability. Lam PB; Burga LN; Wu BP; Hofstatter EW; Lu KP; Wulf GM Mol Cancer; 2008 Dec; 7():91. PubMed ID: 19077306 [TBL] [Abstract][Full Text] [Related]
20. Preclinical studies of gemcitabine and trastuzumab in breast and lung cancer cell lines. Hirsch FR; Helfrich B; Franklin WA; Varella-Garcia M; Chan DC; Bunn PA Clin Breast Cancer; 2002 May; 3 Suppl 1():12-6. PubMed ID: 12057039 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]