These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 20454225)
1. Bipath method as a way to measure the spatial backscatter and extinction coefficients with lidar. Kunz GJ Appl Opt; 1987 Mar; 26(5):794-5. PubMed ID: 20454225 [TBL] [Abstract][Full Text] [Related]
7. Retrieval of aerosol extinction-to-backscatter ratios by combining ground-based and space-borne lidar elastic scattering measurements. Lu X; Jiang Y; Zhang X; Wang X; Nasti L; Spinelli N Opt Express; 2011 Mar; 19 Suppl 2():A72-9. PubMed ID: 21445222 [TBL] [Abstract][Full Text] [Related]
8. Significance of multiple scattering from tropospheric aerosols for ground-based backscatter lidar measurements. Ackermann J; Völger P; Wiegner M Appl Opt; 1999 Aug; 38(24):5195-201. PubMed ID: 18324018 [TBL] [Abstract][Full Text] [Related]
9. Approach to simultaneously denoise and invert backscatter and extinction from photon-limited atmospheric lidar observations. Marais WJ; Holz RE; Hu YH; Kuehn RE; Eloranta EE; Willett RM Appl Opt; 2016 Oct; 55(29):8316-8334. PubMed ID: 27828081 [TBL] [Abstract][Full Text] [Related]
10. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Ansmann A; Wandinger U; Riebesell M; Weitkamp C; Michaelis W Appl Opt; 1992 Nov; 31(33):7113. PubMed ID: 20802574 [TBL] [Abstract][Full Text] [Related]
11. Sensitivity of the lidar solution to errors of the aerosol backscatter-to-extinction ratio: influence of a monotonic change in the aerosol extinction coefficient. Kovalev VA Appl Opt; 1995 Jun; 34(18):3457-62. PubMed ID: 21052160 [TBL] [Abstract][Full Text] [Related]
12. Distortion of particulate extinction profiles measured with lidar in a two-component atmosphere. Kovalev VA; Moosmüller H Appl Opt; 1994 Sep; 33(27):6499-507. PubMed ID: 20941187 [TBL] [Abstract][Full Text] [Related]
13. Cirrus cloud transmittance and backscatter in the infrared measured with a CO(2) lidar. Hall FF; Cupp RE; Troxel SW Appl Opt; 1988 Jun; 27(12):2510-6. PubMed ID: 20531784 [TBL] [Abstract][Full Text] [Related]
14. Transmission as an input boundary value for an analytical solution of a single-scatter lidar equation. Kunz GJ Appl Opt; 1996 Jun; 35(18):3255-60. PubMed ID: 21102710 [TBL] [Abstract][Full Text] [Related]
15. Estimation of the extinction coefficient of clouds from multiwavelength lidar backscatter measurements. Derr VE Appl Opt; 1980 Jul; 19(14):2310-4. PubMed ID: 20234415 [TBL] [Abstract][Full Text] [Related]
16. Iterative method for the inversion of multiwavelength lidar signals to determine aerosol size distribution. Rajeev K; Parameswaran K Appl Opt; 1998 Jul; 37(21):4690-700. PubMed ID: 18285926 [TBL] [Abstract][Full Text] [Related]
17. Sensitivity of a lidar inversion algorithm to parameters relating atmospheric backscatter and extinction. Hughes HG; Ferguson JA; Stephens DH Appl Opt; 1985 Jun; 24(11):1609-13. PubMed ID: 18223764 [TBL] [Abstract][Full Text] [Related]
18. Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations. Sasano Y; Browell EV Appl Opt; 1989 May; 28(9):1670-9. PubMed ID: 20548724 [TBL] [Abstract][Full Text] [Related]
19. Retrieval of water cloud properties from carbon dioxide lidar soundings. Piatt CM; Takashima T Appl Opt; 1987 Apr; 26(7):1257-63. PubMed ID: 20454313 [TBL] [Abstract][Full Text] [Related]
20. Recursive technique for inverting the lidar equation. Gonzalez R Appl Opt; 1988 Jul; 27(13):2741-5. PubMed ID: 20531830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]