These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 20454231)

  • 1. Hybrid optoelectronic integrated circuit.
    Macdonald RI; Lam DK; Syrett BA
    Appl Opt; 1987 Mar; 26(5):842-4. PubMed ID: 20454231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Waveguide-detector couplers for integrated optics and monolithic optoelectronic switching arrays.
    Mak G; Bruce DM; Jessop PE
    Appl Opt; 1989 Nov; 28(21):4629-36. PubMed ID: 20555925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Display glass for low-loss and high-density optical interconnects in electro-optical circuit boards with eight optical layers.
    Brusberg L; Whalley S; Herbst C; Schröder H
    Opt Express; 2015 Dec; 23(25):32528-40. PubMed ID: 26699042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rib waveguide switches with MOS electrooptic control for monolithic integrated optics in GaAs-Al(x)Ga(1-x)As.
    Shelton JC; Reinhart FK; Logan RA
    Appl Opt; 1978 Aug; 17(16):2548-55. PubMed ID: 20203820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion-exchanged optical waveguides for all-optical switching.
    Jackel JL; Vogel EM; Aitchison JS
    Appl Opt; 1990 Jul; 29(21):3126-9. PubMed ID: 20567386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alignment-free fabrication of a hybrid electro-optic polymer/ion-exchange glass coplanar modulator.
    Araci IE; Himmelhuber R; DeRose CT; Luo JD; Jen AK; Norwood RA; Peyghambarian N
    Opt Express; 2010 Sep; 18(20):21038-46. PubMed ID: 20940999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monolithic integration of microfluidic channels, liquid-core waveguides, and silica waveguides on silicon.
    Dumais P; Callender CL; Ledderhof CJ; Noad JP
    Appl Opt; 2006 Dec; 45(36):9182-90. PubMed ID: 17151758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid integrated optical waveguides in glass for enhanced visible photoluminescence of nanoemitters.
    Beltran Madrigal J; Tellez-Limon R; Gardillou F; Barbier D; Geng W; Couteau C; Salas-Montiel R; Blaize S
    Appl Opt; 2016 Dec; 55(36):10263-10268. PubMed ID: 28059238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and characterization of optoelectronic circuit boards produced by two-photon polymerization using a polysiloxane containing acrylate functional groups.
    Woods R; Feldbacher S; Zidar D; Langer G; Satzinger V; Schmid G; Leeb W; Kern W
    Appl Opt; 2013 Jan; 52(3):388-93. PubMed ID: 23338184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of exciton fluxes in an excitonic integrated circuit.
    High AA; Novitskaya EE; Butov LV; Hanson M; Gossard AC
    Science; 2008 Jul; 321(5886):229-31. PubMed ID: 18566248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid free-space optical bus system for board-to-board interconnections.
    Yeh JH; Kostuk RK; Tu KY
    Appl Opt; 1996 Nov; 35(32):6354-64. PubMed ID: 21127659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GaAs based long-wavelength microring resonator optical switches utilising bias assisted carrier-injection induced refractive index change.
    Ravindran S; Datta A; Alameh K; Lee YT
    Opt Express; 2012 Jul; 20(14):15610-27. PubMed ID: 22772255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion-exchanged glass waveguides with low birefringence for a broad range of waveguide widths.
    Yliniemi S; West BR; Honkanen S
    Appl Opt; 2005 Jun; 44(16):3358-63. PubMed ID: 15943272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Planar fabrication process of a high-coupling-efficiency interface between optical waveguides of large index difference.
    Su TJ; Lee CC
    Appl Opt; 1995 Aug; 34(24):5366-74. PubMed ID: 21060357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-based plasmonic waveguides for photonic integrated circuits.
    Kim JT; Choi SY
    Opt Express; 2011 Nov; 19(24):24557-62. PubMed ID: 22109483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial resolution requirements in the fabrication of branching optical waveguides.
    Thurston RN; Kapon E
    Appl Opt; 1988 Apr; 27(7):1349-52. PubMed ID: 20531568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements.
    Flammer PD; Banks JM; Furtak TE; Durfee CG; Hollingsworth RE; Collins RT
    Opt Express; 2010 Sep; 18(20):21013-23. PubMed ID: 20940996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of a third-order nonlinear organic-polymer composite glass waveguide: a self-phase modulator.
    Chon JC; Mickelson AR
    Appl Opt; 1994 Oct; 33(30):6935-41. PubMed ID: 20941240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of potassium-exchanged waveguides in BK7 glass for telecommunication devices.
    Tervonen A; Honkanen S
    Appl Opt; 1996 Nov; 35(33):6435-7. PubMed ID: 21127667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-mode GaAs/AIGaAs W waveguides with a low propagation loss.
    Byun YT; Park KH; Kim SH; Choi SS; Lim TK
    Appl Opt; 1996 Feb; 35(6):928-33. PubMed ID: 21069091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.