These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 20454391)

  • 1. High-throughput GaAs PIN electrooptic modulator with a 3-dB bandwidth of 9.6 GHz at 1.3 microm.
    Lin SH; Wang SY
    Appl Opt; 1987 May; 26(9):1696-700. PubMed ID: 20454391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Traveling wave amplitude modulator with 1-GHz bandwidth for coherent light optical communication.
    Adhav SR; Adhav RS; van de Vaart H
    Appl Opt; 1981 Mar; 20(5):867-71. PubMed ID: 20309220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-crystal electrooptic thin-film waveguide modulators for infrared laser systems.
    Lotspeich JF
    Appl Opt; 1974 Nov; 13(11):2529-39. PubMed ID: 20134733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrooptic modulation up to 40 GHz in a barium titanate thin film waveguide modulator.
    Tang P; Towner D; Hamano T; Meier A; Wessels B
    Opt Express; 2004 Nov; 12(24):5962-7. PubMed ID: 19488237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. n⁺ GaAs/AuGeNi-Au Thermocouple-Type RF MEMS Power Sensors Based on Dual Thermal Flow Paths in GaAs MMIC.
    Zhang Z; Liao X
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28629144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-mode GaAs/AIGaAs W waveguides with a low propagation loss.
    Byun YT; Park KH; Kim SH; Choi SS; Lim TK
    Appl Opt; 1996 Feb; 35(6):928-33. PubMed ID: 21069091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 50 Gb/s hybrid silicon traveling-wave electroabsorption modulator.
    Tang Y; Chen HW; Jain S; Peters JD; Westergren U; Bowers JE
    Opt Express; 2011 Mar; 19(7):5811-6. PubMed ID: 21451605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonantly enhanced radio frequency electrooptic phase modulator.
    Shum CM; Whittaker EA
    Appl Opt; 1990 Jan; 29(3):422-8. PubMed ID: 20556123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-speed photodiodes for InP-based photonic integrated circuits.
    Rouvalis E; Chtioui M; Tran M; Lelarge F; van Dijk F; Fice MJ; Renaud CC; Carpintero G; Seeds AJ
    Opt Express; 2012 Apr; 20(8):9172-7. PubMed ID: 22513628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 40-GHz bandwidth InGaAs/InAlAs multiple quantum well optical intensity modulator.
    Mitomi O; Kotaka I; Wakita K; Nojima S; Kawano K; Kawamura Y; Asai H
    Appl Opt; 1992 Apr; 31(12):2030-5. PubMed ID: 20720855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-efficiency dual-absorption InGaAs/InP photodetector incorporating GaAs/AlGaAs Bragg reflectors.
    Duan X; Huang Y; Shang Y; Wang J; Ren X
    Opt Lett; 2014 Apr; 39(8):2447-50. PubMed ID: 24979015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient phase retardation in single and double pass traveling wave electrooptic light modulators.
    Connors WP
    Appl Opt; 1971 Sep; 10(9):2074-6. PubMed ID: 20111272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of a curved hybrid waveguide lens and photodetector array in a GaAs waveguide.
    Vu TQ; Tsai CS; Kao YC
    Appl Opt; 1992 Sep; 31(25):5246-54. PubMed ID: 20733702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photomixing at 1.55 microm in ion-irradiated In(0.53)Ga(0.47)As on InP.
    Chimot N; Mangeney J; Crozat P; Lourtioz J; Blary K; Lampin J; Mouret G; Bigourd D; Fertein E
    Opt Express; 2006 Mar; 14(5):1856-61. PubMed ID: 19503515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of device length and background doping on the relative magnitudes of phase and amplitude modulation in GaAs/AIGaAs PIN multiple quantum well waveguide optical modulators.
    Bradley PJ; Whitehead M; Parry G; Mistry P; Roberts JS
    Appl Opt; 1989 Apr; 28(8):1560-4. PubMed ID: 20548699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon disulfide traveling-wave Kerr cells.
    Chenoweth AJ; Gaddy OL; Holshouser DF
    Appl Opt; 1966 Oct; 5(10):1652-6. PubMed ID: 20057598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrooptic Bragg-deflection modulators: theoretical and experimental studies.
    Lee YK; Wang S
    Appl Opt; 1976 Jun; 15(6):1565-72. PubMed ID: 20165220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of an 11-GHz Optical Modulator Using LiTaO(3).
    Standley RD; Mandeville GD
    Appl Opt; 1971 May; 10(5):1022-3. PubMed ID: 20094596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor.
    Liu A; Jones R; Liao L; Samara-Rubio D; Rubin D; Cohen O; Nicolaescu R; Paniccia M
    Nature; 2004 Feb; 427(6975):615-8. PubMed ID: 14961115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DC-25 GHz and Low-Loss MEMS Thermoelectric Power Sensors with Floating Thermal Slug and Reliable Back Cavity Based on GaAs MMIC Technology.
    Zhang Z; Ma Y
    Micromachines (Basel); 2018 Mar; 9(4):. PubMed ID: 30424088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.