BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 20454831)

  • 1. Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL-9.
    Walton SL; Bischoff KM; van Heiningen AR; van Walsum GP
    J Ind Microbiol Biotechnol; 2010 Aug; 37(8):823-30. PubMed ID: 20454831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient non-sterilized fermentation of biomass-derived xylose to lactic acid by a thermotolerant Bacillus coagulans NL01.
    Ouyang J; Cai C; Chen H; Jiang T; Zheng Z
    Appl Biochem Biotechnol; 2012 Dec; 168(8):2387-97. PubMed ID: 23076574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermentation of corn fiber hydrolysate to lactic acid by the moderate thermophile Bacillus coagulans.
    Bischoff KM; Liu S; Hughes SR; Rich JO
    Biotechnol Lett; 2010 Jun; 32(6):823-8. PubMed ID: 20155485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp.
    Patel MA; Ou MS; Ingram LO; Shanmugam KT
    Biotechnol Prog; 2005; 21(5):1453-60. PubMed ID: 16209550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.
    Zhang Y; Vadlani PV
    J Biosci Bioeng; 2015 Jun; 119(6):694-9. PubMed ID: 25561329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid.
    Patel MA; Ou MS; Harbrucker R; Aldrich HC; Buszko ML; Ingram LO; Shanmugam KT
    Appl Environ Microbiol; 2006 May; 72(5):3228-35. PubMed ID: 16672461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient production of L-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain.
    Wang L; Zhao B; Liu B; Yu B; Ma C; Su F; Hua D; Li Q; Ma Y; Xu P
    Bioresour Technol; 2010 Oct; 101(20):7908-15. PubMed ID: 20627714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. L: (+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans.
    Ou MS; Ingram LO; Shanmugam KT
    J Ind Microbiol Biotechnol; 2011 May; 38(5):599-605. PubMed ID: 20694852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-yield fermentation of pentoses into lactic acid.
    Iyer PV; Thomas S; Lee YY
    Appl Biochem Biotechnol; 2000; 84-86():665-77. PubMed ID: 10849826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison between different hydrolysis processes of vine-trimming waste to obtain hemicellulosic sugars for further lactic acid conversion.
    Moldes AB; Bustos G; Torrado A; Domínguez JM
    Appl Biochem Biotechnol; 2007 Dec; 143(3):244-56. PubMed ID: 18057452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of acid hydrolysate of oil palm empty fruit bunch to L-lactic acid by newly isolated Bacillus coagulans JI12.
    Ye L; Hudari MS; Zhou X; Zhang D; Li Z; Wu JC
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4831-8. PubMed ID: 23504058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of acetic acid on xylose conversion to ethanol by genetically engineered E. coli.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1992; 34-35():185-204. PubMed ID: 1622203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced L-lactic acid production from biomass-derived xylose by a mutant Bacillus coagulans.
    Zheng Z; Cai C; Jiang T; Zhao M; Ouyang J
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1896-906. PubMed ID: 24879598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the potential of lactic acid production from lignocellulosic hydrolysates with various ratios of hexose versus pentose by Bacillus coagulans IPE22.
    Wang Y; Cao W; Luo J; Wan Y
    Bioresour Technol; 2018 Aug; 261():342-349. PubMed ID: 29677662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of high concentration of l-lactic acid from oil palm empty fruit bunch by thermophilic Bacillus coagulans JI12.
    Juturu V; Wu JC
    Biotechnol Appl Biochem; 2018 Mar; 65(2):145-149. PubMed ID: 28436165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient production of optically pure l-lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans.
    Ma K; Hu G; Pan L; Wang Z; Zhou Y; Wang Y; Ruan Z; He M
    Bioresour Technol; 2016 Nov; 219():114-122. PubMed ID: 27479802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.
    Ehsanipour M; Suko AV; Bura R
    J Ind Microbiol Biotechnol; 2016 Jun; 43(6):807-16. PubMed ID: 26992903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of ethanol from corn stover hemicellulose hydrolyzate using Pichia stipitis.
    Agbogbo FK; Wenger KS
    J Ind Microbiol Biotechnol; 2007 Nov; 34(11):723-7. PubMed ID: 17710458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106.
    Ye L; Zhou X; Hudari MS; Li Z; Wu JC
    Bioresour Technol; 2013 Mar; 132():38-44. PubMed ID: 23399496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.