These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 20454914)

  • 1. Basic study of a transcutaneous information transmission system using intra-body communication.
    Okamoto E; Sato Y; Seino K; Kiyono T; Kato Y; Mitamura Y
    J Artif Organs; 2010 Jul; 13(2):117-20. PubMed ID: 20454914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new transcutaneous bidirectional communication for monitoring implanted artificial heart using the human body as a conductive medium.
    Okamoto E; Kato Y; Seino K; Miura H; Shiraishi Y; Yambe T; Mitamura Y
    Artif Organs; 2012 Oct; 36(10):852-8. PubMed ID: 22812488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcutaneous communication system using the human body as conductive medium: influence of transmission data current on the heart.
    Okamoto E; Kikuchi S; Miura H; Shiraishi Y; Yambe T; Mitamura Y
    Biomed Mater Eng; 2013; 23(1-2):155-62. PubMed ID: 23442245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a bidirectional transcutaneous optical data transmission system for artificial hearts allowing long-distance data communication with low electric power consumption.
    Okamoto E; Yamamoto Y; Inoue Y; Makino T; Mitamura Y
    J Artif Organs; 2005; 8(3):149-53. PubMed ID: 16235031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interface of data transmission for a transcutaneous communication system using the human body as transmission medium.
    Okamoto E; Kato Y; Seino K; Mitamura Y
    J Artif Organs; 2012 Mar; 15(1):99-103. PubMed ID: 21858693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of data communication system with ultra high frequency radio wave for implantable artificial hearts.
    Tsujimura S; Yamagishi H; Sankai Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4110-5. PubMed ID: 19964616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A transcutaneous optical information transmission system for implantable motor-driven artificial hearts.
    Mitamura Y; Okamoto E; Mikami T
    ASAIO Trans; 1990; 36(3):M278-80. PubMed ID: 2252677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-power transceiver analog front-end circuits for bidirectional high data rate wireless telemetry in medical endoscopy applications.
    Chi B; Yao J; Han S; Xie X; Li G; Wang Z
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1291-9. PubMed ID: 17605360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of electrode-tissue interface impedance for improvement of a transcutaneous data transmission using human body as transmission medium.
    Okamoto E; Kato Y; Kikuchi S; Mitamura Y
    Biomed Mater Eng; 2014; 24(4):1735-42. PubMed ID: 24948457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BPSK & QPSK modulated data communication for biomedical monitoring sensor network.
    Wegmueller MS; Fichtner W; Oberle M; Kuster N
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2071-4. PubMed ID: 17946088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo performance evaluation of a transcutaneous energy and information transmission system for the total artificial heart.
    Ahn JM; Kang DW; Kim HC; Min BG
    ASAIO J; 1993; 39(3):M208-12. PubMed ID: 8268530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcutaneous optical telemetry system with infrared laser diode.
    Inoue K; Shiba K; Shu E; Koshiji K; Tsukahara K; Oh-umi T; Masuzawa T; Tatsumi E; Taenaka Y; Takano H
    ASAIO J; 1998; 44(6):841-4. PubMed ID: 9831095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An implantable telemetry platform system for in vivo monitoring of physiological parameters.
    Valdastri P; Menciassi A; Arena A; Caccamo C; Dario P
    IEEE Trans Inf Technol Biomed; 2004 Sep; 8(3):271-8. PubMed ID: 15484432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A transcutaneous data telemetry system tolerant to power telemetry interference.
    Zhou M; Liu W; Wang G; Sivaprakasam M; Yuce MR; Weiland JD; Humayun MS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5884-7. PubMed ID: 17946345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Implementation of Low Power High-Efficient Transceiver for Body Channel Communications.
    Vijayalakshmi S; Nagarajan V
    J Med Syst; 2019 Feb; 43(4):81. PubMed ID: 30788605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcutaneous battery recharging by volume conduction and its circuit modeling.
    Tang Z; Sclabassi RJ; Sun C; Hackworth SA; Zhao J; Cui XT; Sun M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():644-7. PubMed ID: 17945991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Inductive Power and Data Telemetry Subsystem With Fast Transient Low Dropout Regulator for Biomedical Implants.
    Lin YP; Tang KT
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):435-44. PubMed ID: 26285218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of titanium mesh electrode using for transcutaneous intrabody communication by tissue-electrode impedance.
    Okamoto E; Kikuchi S; Mitamura Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():667-70. PubMed ID: 24109775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wireless technologies for closed-loop retinal prostheses.
    Ng DC; Bai S; Yang J; Tran N; Skafidas E
    J Neural Eng; 2009 Dec; 6(6):065004. PubMed ID: 19850974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micropower circuits for bidirectional wireless telemetry in neural recording applications.
    Neihart NM; Harrison RR
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1950-9. PubMed ID: 16285399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.