BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 20455545)

  • 1. Diffusion as a probe of the heterogeneity of antimicrobial peptide-membrane interactions.
    Smith-Dupont KB; Guo L; Gai F
    Biochemistry; 2010 Jun; 49(22):4672-8. PubMed ID: 20455545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magainin 2 revisited: a test of the quantitative model for the all-or-none permeabilization of phospholipid vesicles.
    Gregory SM; Pokorny A; Almeida PF
    Biophys J; 2009 Jan; 96(1):116-31. PubMed ID: 19134472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced membrane pore formation by multimeric/oligomeric antimicrobial peptides.
    Arnusch CJ; Branderhorst H; de Kruijff B; Liskamp RM; Breukink E; Pieters RJ
    Biochemistry; 2007 Nov; 46(46):13437-42. PubMed ID: 17944489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrids made from antimicrobial peptides with different mechanisms of action show enhanced membrane permeabilization.
    Wade HM; Darling LEO; Elmore DE
    Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):182980. PubMed ID: 31067436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly synergistic antimicrobial activity of magainin 2 and PGLa peptides is rooted in the formation of supramolecular complexes with lipids.
    Aisenbrey C; Amaro M; Pospíšil P; Hof M; Bechinger B
    Sci Rep; 2020 Jul; 10(1):11652. PubMed ID: 32669585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charged Antimicrobial Peptides Can Translocate across Membranes without Forming Channel-like Pores.
    Ulmschneider JP
    Biophys J; 2017 Jul; 113(1):73-81. PubMed ID: 28700927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship of membrane curvature to the formation of pores by magainin 2.
    Matsuzaki K; Sugishita K; Ishibe N; Ueha M; Nakata S; Miyajima K; Epand RM
    Biochemistry; 1998 Aug; 37(34):11856-63. PubMed ID: 9718308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa.
    Matsuzaki K; Mitani Y; Akada KY; Murase O; Yoneyama S; Zasloff M; Miyajima K
    Biochemistry; 1998 Oct; 37(43):15144-53. PubMed ID: 9790678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of pores and thinned lipid bilayers induced in oriented lipid membranes interacting with the antimicrobial peptides, magainin-2 and aurein-3.3.
    Kim C; Spano J; Park EK; Wi S
    Biochim Biophys Acta; 2009 Jul; 1788(7):1482-96. PubMed ID: 19409370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane translocation mechanism of the antimicrobial peptide buforin 2.
    Kobayashi S; Chikushi A; Tougu S; Imura Y; Nishida M; Yano Y; Matsuzaki K
    Biochemistry; 2004 Dec; 43(49):15610-6. PubMed ID: 15581374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magainin 2-induced pore formation in the lipid membranes depends on its concentration in the membrane interface.
    Tamba Y; Yamazaki M
    J Phys Chem B; 2009 Apr; 113(14):4846-52. PubMed ID: 19267489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid tails modulate antimicrobial peptide membrane incorporation and activity.
    Walker LR; Marty MT
    Biochim Biophys Acta Biomembr; 2022 Apr; 1864(4):183870. PubMed ID: 35077676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid-controlled peptide topology and interactions in bilayers: structural insights into the synergistic enhancement of the antimicrobial activities of PGLa and magainin 2.
    Salnikov ES; Bechinger B
    Biophys J; 2011 Mar; 100(6):1473-80. PubMed ID: 21402029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures.
    Balatti GE; Martini MF; Pickholz M
    J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion as a probe of peptide-induced membrane domain formation.
    Guo L; Smith-Dupont KB; Gai F
    Biochemistry; 2011 Mar; 50(12):2291-7. PubMed ID: 21332237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peripheral and integral membrane binding of peptides characterized by time-dependent fluorescence shifts: focus on antimicrobial peptide LAH₄.
    Macháň R; Jurkiewicz P; Olżyńska A; Olšinová M; Cebecauer M; Marquette A; Bechinger B; Hof M
    Langmuir; 2014 Jun; 30(21):6171-9. PubMed ID: 24807004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence and Absorbance Spectroscopy Methods to Study Membrane Perturbations by Antimicrobial Host Defense Peptides.
    Arias M; Vogel HJ
    Methods Mol Biol; 2017; 1548():141-157. PubMed ID: 28013502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular Membrane Composition Requirement by Antimicrobial and Anticancer Peptide GA-K4.
    Mishig-Ochir T; Gombosuren D; Jigjid A; Tuguldur B; Chuluunbaatar G; Urnukhsaikhan E; Pathak C; Lee BJ
    Protein Pept Lett; 2017; 24(3):197-205. PubMed ID: 27993125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the membrane association of two antimicrobial peptides, magainin 2 and indolicidin.
    Zhao H; Mattila JP; Holopainen JM; Kinnunen PK
    Biophys J; 2001 Nov; 81(5):2979-91. PubMed ID: 11606308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative mode of action of novel hybrid peptide CS-1a and its rearranged amphipathic analogue CS-2a.
    Joshi S; Bisht GS; Rawat DS; Maiti S; Pasha S
    FEBS J; 2012 Oct; 279(20):3776-90. PubMed ID: 22883393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.