These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
704 related articles for article (PubMed ID: 20455548)
1. Incorporation of graphenes in nanostructured TiO(2) films via molecular grafting for dye-sensitized solar cell application. Tang YB; Lee CS; Xu J; Liu ZT; Chen ZH; He Z; Cao YL; Yuan G; Song H; Chen L; Luo L; Cheng HM; Zhang WJ; Bello I; Lee ST ACS Nano; 2010 Jun; 4(6):3482-8. PubMed ID: 20455548 [TBL] [Abstract][Full Text] [Related]
2. Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells. He Z; Guai G; Liu J; Guo C; Loo JS; Li CM; Tan TT Nanoscale; 2011 Nov; 3(11):4613-6. PubMed ID: 22006266 [TBL] [Abstract][Full Text] [Related]
3. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. Kuang D; Brillet J; Chen P; Takata M; Uchida S; Miura H; Sumioka K; Zakeeruddin SM; Grätzel M ACS Nano; 2008 Jun; 2(6):1113-6. PubMed ID: 19206327 [TBL] [Abstract][Full Text] [Related]
4. Sub-micrometer-sized graphite as a conducting and catalytic counter electrode for dye-sensitized solar cells. Veerappan G; Bojan K; Rhee SW ACS Appl Mater Interfaces; 2011 Mar; 3(3):857-62. PubMed ID: 21351744 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition. Wang HW; Ting CF; Hung MK; Chiou CH; Liu YL; Liu Z; Ratinac KR; Ringer SP Nanotechnology; 2009 Feb; 20(5):055601. PubMed ID: 19417348 [TBL] [Abstract][Full Text] [Related]
6. An unconventional route to high-efficiency dye-sensitized solar cells via embedding graphitic thin films into TiO2 nanoparticle photoanode. Jang YH; Xin X; Byun M; Jang YJ; Lin Z; Kim DH Nano Lett; 2012 Jan; 12(1):479-85. PubMed ID: 22148913 [TBL] [Abstract][Full Text] [Related]
7. Interfacial confined formation of mesoporous spherical TiO2 nanostructures with improved photoelectric conversion efficiency. Shao W; Gu F; Li C; Lu M Inorg Chem; 2010 Jun; 49(12):5453-9. PubMed ID: 20507078 [TBL] [Abstract][Full Text] [Related]
8. Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO(2) hollow fibers. Ghadiri E; Taghavinia N; Zakeeruddin SM; Grätzel M; Moser JE Nano Lett; 2010 May; 10(5):1632-8. PubMed ID: 20423062 [TBL] [Abstract][Full Text] [Related]
9. Effect of the preparation procedure on the morphology of thin TiO₂ films and their device performance in small-molecule bilayer hybrid solar cells. Unger EL; Spadavecchia F; Nonomura K; Palmgren P; Cappelletti G; Hagfeldt A; Johansson EM; Boschloo G ACS Appl Mater Interfaces; 2012 Nov; 4(11):5997-6004. PubMed ID: 23066994 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. Becerril HA; Mao J; Liu Z; Stoltenberg RM; Bao Z; Chen Y ACS Nano; 2008 Mar; 2(3):463-70. PubMed ID: 19206571 [TBL] [Abstract][Full Text] [Related]
11. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. Li SS; Tu KH; Lin CC; Chen CW; Chhowalla M ACS Nano; 2010 Jun; 4(6):3169-74. PubMed ID: 20481512 [TBL] [Abstract][Full Text] [Related]
12. Mesoporous TiO(2): comparison of classical sol-gel and nanoparticle based photoelectrodes for the water splitting reaction. Hartmann P; Lee DK; Smarsly BM; Janek J ACS Nano; 2010 Jun; 4(6):3147-54. PubMed ID: 20486697 [TBL] [Abstract][Full Text] [Related]
13. Effect of an ultrathin TiO(2) layer coated on submicrometer-sized ZnO nanocrystallite aggregates by atomic layer deposition on the performance of dye-sensitized solar cells. Park K; Zhang Q; Garcia BB; Zhou X; Jeong YH; Cao G Adv Mater; 2010 Jun; 22(21):2329-32. PubMed ID: 20376847 [No Abstract] [Full Text] [Related]
14. Electrodeposited nanoporous versus nanoparticulate ZnO films of similar roughness for dye-sensitized solar cell applications. Guerin VM; Magne C; Pauporté T; Le Bahers T; Rathousky J ACS Appl Mater Interfaces; 2010 Dec; 2(12):3677-85. PubMed ID: 21082820 [TBL] [Abstract][Full Text] [Related]
15. Enhanced photovoltaic properties of Nb₂O₅-coated TiO₂ 3D ordered porous electrodes in dye-sensitized solar cells. Kim HN; Moon JH ACS Appl Mater Interfaces; 2012 Nov; 4(11):5821-5. PubMed ID: 23153118 [TBL] [Abstract][Full Text] [Related]
16. TiO(2) fibers enhance film integrity and photovoltaic performance for electrophoretically deposited dye solar cell photoanodes. Shooshtari L; Rahman M; Tajabadi F; Taghavinia N ACS Appl Mater Interfaces; 2011 Mar; 3(3):638-41. PubMed ID: 21341775 [TBL] [Abstract][Full Text] [Related]
17. Water-soluble polyelectrolyte-grafted multiwalled carbon nanotube thin films for efficient counter electrode of dye-sensitized solar cells. Han J; Kim H; Kim DY; Jo SM; Jang SY ACS Nano; 2010 Jun; 4(6):3503-9. PubMed ID: 20509667 [TBL] [Abstract][Full Text] [Related]
19. Microwave assisted CdSe quantum dot deposition on TiO2 films for dye-sensitized solar cells. Zhu G; Pan L; Xu T; Zhao Q; Lu B; Sun Z Nanoscale; 2011 May; 3(5):2188-93. PubMed ID: 21451826 [TBL] [Abstract][Full Text] [Related]
20. Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells. Wang H; Bai Y; Wu Q; Zhou W; Zhang H; Li J; Guo L Phys Chem Chem Phys; 2011 Apr; 13(15):7008-13. PubMed ID: 21399795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]