These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Experimental and computational analysis of the transition state for ribonuclease A-catalyzed RNA 2'-O-transphosphorylation. Gu H; Zhang S; Wong KY; Radak BK; Dissanayake T; Kellerman DL; Dai Q; Miyagi M; Anderson VE; York DM; Piccirilli JA; Harris ME Proc Natl Acad Sci U S A; 2013 Aug; 110(32):13002-7. PubMed ID: 23878223 [TBL] [Abstract][Full Text] [Related]
3. Interaction of substrate uridyl 3',5'-adenosine with ribonuclease A: a molecular dynamics study. Seshadri K; Rao VS; Vishveshwara S Biophys J; 1995 Dec; 69(6):2185-94. PubMed ID: 8599627 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional structure of the complexes of ribonuclease A with 2',5'-CpA and 3',5'-d(CpA) in aqueous solution, as obtained by NMR and restrained molecular dynamics. Toiron C; González C; Bruix M; Rico M Protein Sci; 1996 Aug; 5(8):1633-47. PubMed ID: 8844852 [TBL] [Abstract][Full Text] [Related]
5. Ab initio study of the reaction mechanism of ribonuclease A with cytidyl-3',5'-adenosine. I. Geometry optimization of cytidyl-3', 5'-adenosine. Peeters A; Van Alsenoy C Biopolymers; 1999 Dec; 50(7):697-704. PubMed ID: 10547525 [TBL] [Abstract][Full Text] [Related]
6. A dianionic phosphorane intermediate and transition states in an associative A(N)+D(N) mechanism for the ribonucleaseA hydrolysis reaction. Elsässer B; Valiev M; Weare JH J Am Chem Soc; 2009 Mar; 131(11):3869-71. PubMed ID: 19245210 [TBL] [Abstract][Full Text] [Related]
7. Mechanistic studies on substrate inhibition and substrate activation of ribonuclease A: experimental and Dehghan Shasaltaneh M; Naghdi E; Moosavi-Nejad Z J Biomol Struct Dyn; 2024 Aug; 42(13):6628-6644. PubMed ID: 37539792 [TBL] [Abstract][Full Text] [Related]
8. Computer modeling and molecular dynamics simulations of ligand bound complexes of bovine angiogenin: dinucleotide topology at the active site of RNase a family proteins. Madhusudhan MS; Sanjeev BS; Vishveshwara S Proteins; 2001 Oct; 45(1):30-9. PubMed ID: 11536357 [TBL] [Abstract][Full Text] [Related]
9. Effect of Zn2+ binding and enzyme active site on the transition state for RNA 2'-O-transphosphorylation interpreted through kinetic isotope effects. Chen H; Piccirilli JA; Harris ME; York DM Biochim Biophys Acta; 2015 Nov; 1854(11):1795-800. PubMed ID: 25812974 [TBL] [Abstract][Full Text] [Related]
10. Cleavage of 3',5'-pyrophosphate-linked dinucleotides by ribonuclease A and angiogenin. Jardine AM; Leonidas DD; Jenkins JL; Park C; Raines RT; Acharya KR; Shapiro R Biochemistry; 2001 Aug; 40(34):10262-72. PubMed ID: 11513604 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional structure of ribonuclease T1 complexed with an isosteric phosphonate substrate analogue of GpU: alternate substrate binding modes and catalysis. Arni RK; Watanabe L; Ward RJ; Kreitman RJ; Kumar K; Walz FG Biochemistry; 1999 Feb; 38(8):2452-61. PubMed ID: 10029539 [TBL] [Abstract][Full Text] [Related]
12. A potential allosteric subsite generated by domain swapping in bovine seminal ribonuclease. Vitagliano L; Adinolfi S; Sica F; Merlino A; Zagari A; Mazzarella L J Mol Biol; 1999 Oct; 293(3):569-77. PubMed ID: 10543951 [TBL] [Abstract][Full Text] [Related]
13. Binding of a substrate analog to a domain swapping protein: X-ray structure of the complex of bovine seminal ribonuclease with uridylyl(2',5')adenosine. Vitagliano L; Adinolfi S; Riccio A; Sica F; Zagari A; Mazzarella L Protein Sci; 1998 Aug; 7(8):1691-9. PubMed ID: 10082366 [TBL] [Abstract][Full Text] [Related]
14. Active site dynamics of ribonuclease. Brünger AT; Brooks CL; Karplus M Proc Natl Acad Sci U S A; 1985 Dec; 82(24):8458-62. PubMed ID: 3866234 [TBL] [Abstract][Full Text] [Related]
15. Role of Phe120 in the activity and structure of bovine pancreatic ribonuclease A. Tanimizu N; Ueno H; Hayashi R J Biochem; 1998 Aug; 124(2):410-6. PubMed ID: 9685734 [TBL] [Abstract][Full Text] [Related]
16. QM/MM simulation (B3LYP) of the RNase A cleavage-transesterification reaction supports a triester A(N) + D(N) associative mechanism with an O2' H internal proton transfer. Elsässer B; Fels G; Weare JH J Am Chem Soc; 2014 Jan; 136(3):927-36. PubMed ID: 24372083 [TBL] [Abstract][Full Text] [Related]
17. Dynamics of non-covalent interactions during the P-O bond cleavage reaction by ribonuclease A. Kaplanskiy MV; Kruglov ML; Vanin AA; Tupikina EY Phys Chem Chem Phys; 2024 Aug; 26(31):21061-21073. PubMed ID: 39054927 [TBL] [Abstract][Full Text] [Related]
18. Ribonuclease A mutant His119 Asn: the role of histidine in catalysis. Panov KI; Kolbanovskaya EY; Okorokov AL; Panova TB; Terwisscha van Scheltinga AC; Karpeisky MYa ; Beintema JJ FEBS Lett; 1996 Nov; 398(1):57-60. PubMed ID: 8946953 [TBL] [Abstract][Full Text] [Related]
19. [Kinetic parameters of hydrolysis of CpA and UpA sequences in an oligoribonucleotide by compounds functionally mimicking ribonuclease A]. Beloglazova NG; Mironova NL; Konevets DA; Petiuk VA; Sil'nikov VN; Vlasov VV; Zenkova MA Mol Biol (Mosk); 2002; 36(6):1068-73. PubMed ID: 12500546 [TBL] [Abstract][Full Text] [Related]
20. Dynamics of the native and the ligand-bound structures of eosinophil cationic protein: network of hydrogen bonds at the catalytic site. Sanjeev BS; Vishveshwara S J Biomol Struct Dyn; 2005 Jun; 22(6):657-72. PubMed ID: 15842171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]