BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 20455701)

  • 1. Sickle cell biomechanics.
    Barabino GA; Platt MO; Kaul DK
    Annu Rev Biomed Eng; 2010 Aug; 12():345-67. PubMed ID: 20455701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GBT440 improves red blood cell deformability and reduces viscosity of sickle cell blood under deoxygenated conditions.
    Dufu K; Patel M; Oksenberg D; Cabrales P
    Clin Hemorheol Microcirc; 2018; 70(1):95-105. PubMed ID: 29660913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired vasodilation by red blood cells in sickle cell disease.
    Pawloski JR; Hess DT; Stamler JS
    Proc Natl Acad Sci U S A; 2005 Feb; 102(7):2531-6. PubMed ID: 15699345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient.
    Byun H; Hillman TR; Higgins JM; Diez-Silva M; Peng Z; Dao M; Dasari RR; Suresh S; Park Y
    Acta Biomater; 2012 Nov; 8(11):4130-8. PubMed ID: 22820310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Sickling During Controlled Automated Deoxygenation with Oxygen Gradient Ektacytometry.
    Rab MAE; van Oirschot BA; Bos J; Kanne CK; Sheehan VA; van Beers EJ; van Wijk R
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31762454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous viscous deformation of red blood cells in flow and their disturbance in sickle cell disease.
    Schmid-Schönbein H
    Blood Cells; 1982; 8(1):29-51. PubMed ID: 7115977
    [No Abstract]   [Full Text] [Related]  

  • 7. GBT440 increases haemoglobin oxygen affinity, reduces sickling and prolongs RBC half-life in a murine model of sickle cell disease.
    Oksenberg D; Dufu K; Patel MP; Chuang C; Li Z; Xu Q; Silva-Garcia A; Zhou C; Hutchaleelaha A; Patskovska L; Patskovsky Y; Almo SC; Sinha U; Metcalf BW; Archer DR
    Br J Haematol; 2016 Oct; 175(1):141-53. PubMed ID: 27378309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanics and biorheology of red blood cells in sickle cell anemia.
    Li X; Dao M; Lykotrafitis G; Karniadakis GE
    J Biomech; 2017 Jan; 50():34-41. PubMed ID: 27876368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patient-specific modeling of individual sickle cell behavior under transient hypoxia.
    Li X; Du E; Dao M; Suresh S; Karniadakis GE
    PLoS Comput Biol; 2017 Mar; 13(3):e1005426. PubMed ID: 28288152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating deep learning with microfluidics for biophysical classification of sickle red blood cells adhered to laminin.
    Praljak N; Iram S; Goreke U; Singh G; Hill A; Gurkan UA; Hinczewski M
    PLoS Comput Biol; 2021 Nov; 17(11):e1008946. PubMed ID: 34843453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Red Blood Cell-Inflammation Vicious Circle in Sickle Cell Disease.
    Nader E; Romana M; Connes P
    Front Immunol; 2020; 11():454. PubMed ID: 32231672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of increased deformability of deoxygenated sickle cells upon oxygenation.
    Huang Z; Hearne L; Irby CE; King SB; Ballas SK; Kim-Shapiro DB
    Biophys J; 2003 Oct; 85(4):2374-83. PubMed ID: 14507701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sickle cell disease pathophysiology.
    Noguchi CT; Schechter AN; Rodgers GP
    Baillieres Clin Haematol; 1993 Mar; 6(1):57-91. PubMed ID: 8353318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of sickle hemoglobin polymerization and membrane properties on deformability of sickle erythrocytes in the microcirculation.
    Dong C; Chadwick RS; Schechter AN
    Biophys J; 1992 Sep; 63(3):774-83. PubMed ID: 1420913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond hemoglobin polymerization: the red blood cell membrane and sickle disease pathophysiology.
    Hebbel RP
    Blood; 1991 Jan; 77(2):214-37. PubMed ID: 1985689
    [No Abstract]   [Full Text] [Related]  

  • 16. Sickle cell disease--pathophysiology, clinical and diagnostic implications.
    Dorn-Beineke A; Frietsch T
    Clin Chem Lab Med; 2002 Nov; 40(11):1075-84. PubMed ID: 12521222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights provided by a comparison of impaired deformability with erythrocyte oxidative stress for sickle cell disease.
    Barodka VM; Nagababu E; Mohanty JG; Nyhan D; Berkowitz DE; Rifkind JM; Strouse JJ
    Blood Cells Mol Dis; 2014 Apr; 52(4):230-5. PubMed ID: 24246527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous polymerization and adhesion under hypoxia in sickle cell disease.
    Papageorgiou DP; Abidi SZ; Chang HY; Li X; Kato GJ; Karniadakis GE; Suresh S; Dao M
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9473-9478. PubMed ID: 30190429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and reproducible characterization of sickling during automated deoxygenation in sickle cell disease patients.
    Rab MAE; van Oirschot BA; Bos J; Merkx TH; van Wesel ACW; Abdulmalik O; Safo MK; Versluijs BA; Houwing ME; Cnossen MH; Riedl J; Schutgens REG; Pasterkamp G; Bartels M; van Beers EJ; van Wijk R
    Am J Hematol; 2019 May; 94(5):575-584. PubMed ID: 30784099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of sickle hemoglobin polymer and sickle cell membranes to impaired filterability.
    Hiruma H; Noguchi CT; Uyesaka N; Schechter AN; Rodgers GP
    Am J Physiol; 1995 May; 268(5 Pt 2):H2003-8. PubMed ID: 7771550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.