These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 20455930)

  • 61. The morphology and evolutionary significance of the ciliary fields and musculature among marine bryozoan larvae.
    Santagata S
    J Morphol; 2008 Mar; 269(3):349-64. PubMed ID: 17960760
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Phenotypic evolution in prehistoric Ohio Amerindians: natural selection versus random genetic drift in tooth size reduction.
    Sciulli PW; Mahaney MC
    Hum Biol; 1991 Aug; 63(4):499-511. PubMed ID: 1889798
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Using isolation by distance and effective density to estimate dispersal scales in anemonefish.
    Pinsky ML; Montes HR; Palumbi SR
    Evolution; 2010 Sep; 64(9):2688-700. PubMed ID: 20394657
    [TBL] [Abstract][Full Text] [Related]  

  • 64. How much do marine connectivity fluctuations matter?
    Snyder RE; Paris CB; Vaz AC
    Am Nat; 2014 Oct; 184(4):523-30. PubMed ID: 25226187
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Evolutionary consequences of nonselective harvesting in density-dependent populations.
    Engen S; Lande R; Sæther BE
    Am Nat; 2014 Dec; 184(6):714-26. PubMed ID: 25438172
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Larval size and age affect colonization in a marine invertebrate.
    Marshall DJ; Steinberg PD
    J Exp Biol; 2014 Nov; 217(Pt 22):3981-7. PubMed ID: 25267847
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Environment-dependent trade-offs between ectoparasite resistance and larval competitive ability in the Drosophila-Macrocheles system.
    Luong LT; Polak M
    Heredity (Edinb); 2007 Dec; 99(6):632-40. PubMed ID: 17700633
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Marine Dispersal Scales Are Congruent over Evolutionary and Ecological Time.
    Pinsky ML; Saenz-Agudelo P; Salles OC; Almany GR; Bode M; Berumen ML; Andréfouët S; Thorrold SR; Jones GP; Planes S
    Curr Biol; 2017 Jan; 27(1):149-154. PubMed ID: 27989671
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The evolution of species interactions across natural landscapes.
    Urban MC
    Ecol Lett; 2011 Jul; 14(7):723-32. PubMed ID: 21615660
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Local retention, dispersal and fluctuating connectivity among populations of a coral reef fish.
    Hogan JD; Thiessen RJ; Sale PF; Heath DD
    Oecologia; 2012 Jan; 168(1):61-71. PubMed ID: 21735201
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Self-recruitment in a Caribbean reef fish: a method for approximating dispersal kernels accounting for seascape.
    D'Aloia CC; Bogdanowicz SM; Majoris JE; Harrison RG; Buston PM
    Mol Ecol; 2013 May; 22(9):2563-72. PubMed ID: 23495725
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Natural selection. II. Developmental variability and evolutionary rate.
    Frank SA
    J Evol Biol; 2011 Nov; 24(11):2310-20. PubMed ID: 21939464
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A quantitative genetic model of r- and K-selection in a fluctuating population.
    Engen S; Lande R; Saether BE
    Am Nat; 2013 Jun; 181(6):725-36. PubMed ID: 23669536
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Phenotypic variation and selective mortality as major drivers of recruitment variability in fishes.
    Johnson DW; Grorud-Colvert K; Sponaugle S; Semmens BX
    Ecol Lett; 2014 Jun; 17(6):743-55. PubMed ID: 24674603
    [TBL] [Abstract][Full Text] [Related]  

  • 75. An integrated analysis of phenotypic selection on insect body size and development time.
    Eck DJ; Shaw RG; Geyer CJ; Kingsolver JG
    Evolution; 2015 Sep; 69(9):2525-32. PubMed ID: 26257167
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Eco-Evolutionary dynamics enable coexistence via neighbor-dependent selection.
    Vasseur DA; Amarasekare P; Rudolf VH; Levine JM
    Am Nat; 2011 Nov; 178(5):E96-E109. PubMed ID: 22030739
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Larval traits show temporally consistent constraints, but are decoupled from postsettlement juvenile growth, in an intertidal fish.
    Thia JA; Riginos C; Liggins L; Figueira WF; McGuigan K
    J Anim Ecol; 2018 Sep; 87(5):1353-1363. PubMed ID: 29729011
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evidence of local adaptation in a waterfall-climbing Hawaiian goby fish derived from coupled biophysical modeling of larval dispersal and post-settlement selection.
    Moody KN; Wren JLK; Kobayashi DR; Blum MJ; Ptacek MB; Blob RW; Toonen RJ; Schoenfuss HL; Childress MJ
    BMC Evol Biol; 2019 Apr; 19(1):88. PubMed ID: 30975077
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Rapid independent trait evolution despite a strong pleiotropic genetic correlation.
    Conner JK; Karoly K; Stewart C; Koelling VA; Sahli HF; Shaw FH
    Am Nat; 2011 Oct; 178(4):429-41. PubMed ID: 21956022
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Relaxed selection in the wild.
    Lahti DC; Johnson NA; Ajie BC; Otto SP; Hendry AP; Blumstein DT; Coss RG; Donohue K; Foster SA
    Trends Ecol Evol; 2009 Sep; 24(9):487-96. PubMed ID: 19500875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.