These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 20455935)
1. Links between methane flux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bog. Freitag TE; Toet S; Ineson P; Prosser JI FEMS Microbiol Ecol; 2010 Jul; 73(1):157-65. PubMed ID: 20455935 [TBL] [Abstract][Full Text] [Related]
2. In situ measurement of methane fluxes and analysis of transcribed particulate methane monooxygenase in desert soils. Angel R; Conrad R Environ Microbiol; 2009 Oct; 11(10):2598-610. PubMed ID: 19601957 [TBL] [Abstract][Full Text] [Related]
3. Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Kolb S; Knief C; Dunfield PF; Conrad R Environ Microbiol; 2005 Aug; 7(8):1150-61. PubMed ID: 16011752 [TBL] [Abstract][Full Text] [Related]
4. Activities and distribution of methanogenic and methane-oxidizing microbes in marine sediments from the Cascadia Margin. Yoshioka H; Maruyama A; Nakamura T; Higashi Y; Fuse H; Sakata S; Bartlett DH Geobiology; 2010 Jun; 8(3):223-33. PubMed ID: 20059557 [TBL] [Abstract][Full Text] [Related]
5. Correlation of methane production and functional gene transcriptional activity in a peat soil. Freitag TE; Prosser JI Appl Environ Microbiol; 2009 Nov; 75(21):6679-87. PubMed ID: 19749064 [TBL] [Abstract][Full Text] [Related]
6. Quantitative PCR of pmoA using a novel reverse primer correlates with potential methane oxidation in Finnish fen. Tuomivirta TT; Yrjälä K; Fritze H Res Microbiol; 2009 Dec; 160(10):751-6. PubMed ID: 19781637 [TBL] [Abstract][Full Text] [Related]
7. Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. Friedrich MW Methods Enzymol; 2005; 397():428-42. PubMed ID: 16260307 [TBL] [Abstract][Full Text] [Related]
8. Impact of Peat Mining and Restoration on Methane Turnover Potential and Methane-Cycling Microorganisms in a Northern Bog. Reumer M; Harnisz M; Lee HJ; Reim A; Grunert O; Putkinen A; Fritze H; Bodelier PLE; Ho A Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29180368 [TBL] [Abstract][Full Text] [Related]
9. Links between methanotroph community composition and CH oxidation in a pine forest soil. Bengtson P; Basiliko N; Dumont MG; Hills M; Murrell JC; Roy R; Grayston SJ FEMS Microbiol Ecol; 2009 Dec; 70(3):356-66. PubMed ID: 19811539 [TBL] [Abstract][Full Text] [Related]
10. Methanogen communities and Bacteria along an ecohydrological gradient in a northern raised bog complex. Juottonen H; Galand PE; Tuittila ES; Laine J; Fritze H; Yrjälä K Environ Microbiol; 2005 Oct; 7(10):1547-57. PubMed ID: 16156728 [TBL] [Abstract][Full Text] [Related]
11. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Leininger S; Urich T; Schloter M; Schwark L; Qi J; Nicol GW; Prosser JI; Schuster SC; Schleper C Nature; 2006 Aug; 442(7104):806-9. PubMed ID: 16915287 [TBL] [Abstract][Full Text] [Related]
12. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Nicol GW; Leininger S; Schleper C; Prosser JI Environ Microbiol; 2008 Nov; 10(11):2966-78. PubMed ID: 18707610 [TBL] [Abstract][Full Text] [Related]
13. Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. Wilms R; Sass H; Köpke B; Cypionka H; Engelen B FEMS Microbiol Ecol; 2007 Mar; 59(3):611-21. PubMed ID: 17059478 [TBL] [Abstract][Full Text] [Related]
14. Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcrA gene. Juottonen H; Galand PE; Yrjälä K Res Microbiol; 2006 Dec; 157(10):914-21. PubMed ID: 17070673 [TBL] [Abstract][Full Text] [Related]
15. Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ. Qiu Q; Noll M; Abraham WR; Lu Y; Conrad R ISME J; 2008 Jun; 2(6):602-14. PubMed ID: 18385771 [TBL] [Abstract][Full Text] [Related]
16. Trophic links between fermenters and methanogens in a moderately acidic fen soil. Wüst PK; Horn MA; Drake HL Environ Microbiol; 2009 Jun; 11(6):1395-409. PubMed ID: 19222542 [TBL] [Abstract][Full Text] [Related]
17. Effect of nutrient and selective inhibitor amendments on methane oxidation, nitrous oxide production, and key gene presence and expression in landfill cover soils: characterization of the role of methanotrophs, nitrifiers, and denitrifiers. Lee SW; Im J; Dispirito AA; Bodrossy L; Barcelona MJ; Semrau JD Appl Microbiol Biotechnol; 2009 Nov; 85(2):389-403. PubMed ID: 19787350 [TBL] [Abstract][Full Text] [Related]
18. Methane emission and dynamics of methanotrophic and methanogenic communities in a flooded rice field ecosystem. Lee HJ; Kim SY; Kim PJ; Madsen EL; Jeon CO FEMS Microbiol Ecol; 2014 Apr; 88(1):195-212. PubMed ID: 24410836 [TBL] [Abstract][Full Text] [Related]
19. The impact of aridification and vegetation type on changes in the community structure of methane-cycling microorganisms in Japanese wetland soils. Narihiro T; Hori T; Nagata O; Hoshino T; Yumoto I; Kamagata Y Biosci Biotechnol Biochem; 2011; 75(9):1727-34. PubMed ID: 21897040 [TBL] [Abstract][Full Text] [Related]
20. Methane dynamics in an alpine fen: a field-based study on methanogenic and methanotrophic microbial communities. Franchini AG; Henneberger R; Aeppli M; Zeyer J FEMS Microbiol Ecol; 2015 Mar; 91(3):. PubMed ID: 25789997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]