BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 20456710)

  • 1. Inositol hexaphosphate-loaded red blood cells prevent in vitro sickling.
    Bourgeaux V; Hequet O; Campion Y; Delcambre G; Chevrier AM; Rigal D; Godfrin Y
    Transfusion; 2010 Oct; 50(10):2176-84. PubMed ID: 20456710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of inositol hexaphosphate-loaded red blood cells (RBCs) on the rheology of sickle RBCs.
    Lamarre Y; Bourgeaux V; Pichon A; Hardeman MR; Campion Y; Hardeman-Zijp M; Martin C; Richalet JP; Bernaudin F; Driss F; Godfrin Y; Connes P
    Transfusion; 2013 Mar; 53(3):627-36. PubMed ID: 22804873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sickling as a function of oxygen delivery: effect of simulated transfusions of stored, fresh and inositol-hexaphosphate-loaded (low affinity) red cells.
    Kumpati J; Franco RS; Weiner M; Martelo OJ
    Blood Cells; 1982; 8(2):263-72. PubMed ID: 7159750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy of homologous inositol hexaphosphate-loaded red blood cells in sickle transgenic mice.
    Bourgeaux V; Aufradet E; Campion Y; De Souza G; Horand F; Bessaad A; Chevrier AM; Canet-Soulas E; Godfrin Y; Martin C
    Br J Haematol; 2012 May; 157(3):357-69. PubMed ID: 22404654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delayed hemolytic transfusion reaction in sickle cell disease patients: evidence of an emerging syndrome with suicidal red blood cell death.
    Chadebech P; Habibi A; Nzouakou R; Bachir D; Meunier-Costes N; Bonin P; Rodet M; Chami B; Galacteros F; Bierling P; Noizat-Pirenne F
    Transfusion; 2009 Sep; 49(9):1785-92. PubMed ID: 19413729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of sickling after reduction of intracellular hemoglobin concentration with an osmotic pulse: characterization of the density and hemoglobin concentration distributions.
    Franco RS; Barker-Gear R; Green R
    Blood Cells; 1993; 19(2):475-88; discussion 489-91. PubMed ID: 8312575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of the oxygen affinity and intracellular hemoglobin concentration of normal and sickle cells by means of an osmotic pulse.
    Franco RS; Barker RL
    J Lab Clin Med; 1989 Jan; 113(1):58-66. PubMed ID: 2909651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of erythrocytapheresis transfusion on the viscoelasticity of sickle cell blood.
    Thurston GB; Henderson NM; Jeng M
    Clin Hemorheol Microcirc; 2004; 30(1):61-75. PubMed ID: 14967885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low concentrations of nitric oxide increase oxygen affinity of sickle erythrocytes in vitro and in vivo.
    Head CA; Brugnara C; Martinez-Ruiz R; Kacmarek RM; Bridges KR; Kuter D; Bloch KD; Zapol WM
    J Clin Invest; 1997 Sep; 100(5):1193-8. PubMed ID: 9276736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rat model for sickle cell-mediated vaso-occlusion in retina.
    Lutty GA; Phelan A; McLeod DS; Fabry ME; Nagel RL
    Microvasc Res; 1996 Nov; 52(3):270-80. PubMed ID: 8954868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of carbon dioxide and pH variations in vitro on blood respiratory functions, red blood cell volume, transmembrane pH gradients, and sickling in sickle cell anemia.
    Ueda Y; Bookchin RM
    J Lab Clin Med; 1984 Aug; 104(2):146-59. PubMed ID: 6431043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen-dependent circulation of sickle erythrocytes.
    Castro O; Osbaldiston GW; Aponte L; Roth R; Orlin J; Finch SC
    J Lab Clin Med; 1976 Nov; 88(5):732-44. PubMed ID: 988104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of erythrocytapheresis transfusion on the viscoelasticity of sickle cell blood.
    Thurston GB; Henderson NM; Jeng M
    Clin Hemorheol Microcirc; 2004; 30(2):83-97. PubMed ID: 15004333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Etavopivat, a Pyruvate Kinase Activator in Red Blood Cells, for the Treatment of Sickle Cell Disease.
    Schroeder P; Fulzele K; Forsyth S; Ribadeneira MD; Guichard S; Wilker E; Marshall CG; Drake A; Fessler R; Konstantinidis DG; Seu KG; Kalfa TA
    J Pharmacol Exp Ther; 2022 Mar; 380(3):210-219. PubMed ID: 35031585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vaso-occlusive crisis episodes in sickle cell disease.
    Adhikary PK; Hara S; Dwivedi C; Davis JW; Weaver C; Pavuluri SR
    J Med; 1986; 17(3-4):227-40. PubMed ID: 3473166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quaternary structure of carbonmonoxyhemoglobins in solution: structural changes induced by the allosteric effector inositol hexaphosphate.
    Gong Q; Simplaceanu V; Lukin JA; Giovannelli JL; Ho NT; Ho C
    Biochemistry; 2006 Apr; 45(16):5140-8. PubMed ID: 16618103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyurea in the treatment of sickle-cell anemia.
    Howard LW; Kennedy LD
    Ann Pharmacother; 1997 Nov; 31(11):1393-6. PubMed ID: 9391697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ex Vivo Activation of Red Blood Cell Senescence by Plasma from Sickle-Cell Disease Patients: Correlation between Markers and Adhesion Consequences during Acute Disease Events.
    Chadebech P; Bodivit G; Di Liberto G; Jouard A; Vasseur C; Pirenne F; Bartolucci P
    Biomolecules; 2021 Jun; 11(7):. PubMed ID: 34208829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Red cell exchange: special focus on sickle cell disease.
    Kim HC
    Hematology Am Soc Hematol Educ Program; 2014 Dec; 2014(1):450-6. PubMed ID: 25696893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheological studies of erythrocyte-endothelial cell interactions in sickle cell disease.
    Barabino GA; McIntire LV; Eskin SG; Sears DA; Udden M
    Prog Clin Biol Res; 1987; 240():113-27. PubMed ID: 3615482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.