BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 20456950)

  • 1. Ethanolic cofermentation with glucose and xylose by the recombinant industrial strain Saccharomyces cerevisiae NAN-127 and the effect of furfural on xylitol production.
    Zhang X; Shen Y; Shi W; Bao X
    Bioresour Technol; 2010 Sep; 101(18):7104-10. PubMed ID: 20456950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae.
    Hou J; Shen Y; Li XP; Bao XM
    Lett Appl Microbiol; 2007 Aug; 45(2):184-9. PubMed ID: 17651216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae.
    Karhumaa K; Fromanger R; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):1039-46. PubMed ID: 16977466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Matsushika A; Watanabe S; Kodaki T; Makino K; Inoue H; Murakami K; Takimura O; Sawayama S
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway.
    Ishii J; Yoshimura K; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The deletion of YLR042c improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae.
    Parachin NS; Bengtsson O; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2010 Sep; 27(9):741-51. PubMed ID: 20641017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient bioethanol production from xylose by recombinant saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity.
    Matsushika A; Sawayama S
    J Biosci Bioeng; 2008 Sep; 106(3):306-9. PubMed ID: 18930011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains.
    Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L
    Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.
    Matsushika A; Inoue H; Murakami K; Takimura O; Sawayama S
    Bioresour Technol; 2009 Apr; 100(8):2392-8. PubMed ID: 19128960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.
    Lee SH; Kodaki T; Park YC; Seo JH
    J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP(+)-dependent xylitol dehydrogenase, and xylulokinase.
    Matsushika A; Watanabe S; Kodaki T; Makino K; Sawayama S
    J Biosci Bioeng; 2008 Mar; 105(3):296-9. PubMed ID: 18397783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.
    Zaldivar J; Borges A; Johansson B; Smits HP; Villas-Bôas SG; Nielsen J; Olsson L
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):436-42. PubMed ID: 12172606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of initial cell concentration on ethanol production by flocculent Saccharomyces cerevisiae with xylose-fermenting ability.
    Matsushika A; Sawayama S
    Appl Biochem Biotechnol; 2010 Nov; 162(7):1952-60. PubMed ID: 20432070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of a recombinant S. cerevisiae expressing a fusion protein and study on the effect of converting xylose and glucose to ethanol.
    Zhang J; Tian S; Zhang Y; Yang X
    Appl Biochem Biotechnol; 2008 Aug; 150(2):185-92. PubMed ID: 18415054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae.
    Hou J; Vemuri GN; Bao X; Olsson L
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):909-19. PubMed ID: 19221731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains.
    Jeppsson M; Johansson B; Jensen PR; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2003 Nov; 20(15):1263-72. PubMed ID: 14618564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study on xylose fermentation by Neurospora crassa].
    Zhang X; Zhu D; Wang D; Lin J; Qu Y; Yu S
    Wei Sheng Wu Xue Bao; 2003 Aug; 43(4):466-72. PubMed ID: 16276921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase.
    Khattab SM; Saimura M; Kodaki T
    J Biotechnol; 2013 Jun; 165(3-4):153-6. PubMed ID: 23578809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.