These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Purification and characterization of a viral chitinase active against plant pathogens and herbivores from transgenic tobacco. Di Maro A; Terracciano I; Sticco L; Fiandra L; Ruocco M; Corrado G; Parente A; Rao R J Biotechnol; 2010 May; 147(1):1-6. PubMed ID: 20302895 [TBL] [Abstract][Full Text] [Related]
3. AcMNPV ChiA protein disrupts the peritrophic membrane and alters midgut physiology of Bombyx mori larvae. Rao R; Fiandra L; Giordana B; de Eguileor M; Congiu T; Burlini N; Arciello S; Corrado G; Pennacchio F Insect Biochem Mol Biol; 2004 Nov; 34(11):1205-13. PubMed ID: 15522616 [TBL] [Abstract][Full Text] [Related]
4. Biochemical and cytoimmunological evidence for the control of Aedes aegypti larval trypsin with Aea-TMOF. Borovsky D; Meola SM Arch Insect Biochem Physiol; 2004 Mar; 55(3):124-39. PubMed ID: 14981657 [TBL] [Abstract][Full Text] [Related]
5. Insect resistance of transgenic tobacco expressing an insect chitinase gene. Ding X; Gopalakrishnan B; Johnson LB; White FF; Wang X; Morgan TD; Kramer KJ; Muthukrishnan S Transgenic Res; 1998 Mar; 7(2):77-84. PubMed ID: 9608735 [TBL] [Abstract][Full Text] [Related]
6. An insect peptide engineered into the tomato prosystemin gene is released in transgenic tobacco plants and exerts biological activity. Tortiglione C; Fogliano V; Ferracane R; Fanti P; Pennacchio F; Monti LM; Rao R Plant Mol Biol; 2003 Dec; 53(6):891-902. PubMed ID: 15082933 [TBL] [Abstract][Full Text] [Related]
7. TMOF-like factor controls the biosynthesis of serine proteases in the larval gut of Heliothis virescens. Nauen R; Sorge D; Sterner A; Borovsky D Arch Insect Biochem Physiol; 2001 Aug; 47(4):169-80. PubMed ID: 11462221 [TBL] [Abstract][Full Text] [Related]
8. The Chitinase A from the baculovirus AcMNPV enhances resistance to both fungi and herbivorous pests in tobacco. Corrado G; Arciello S; Fanti P; Fiandra L; Garonna A; Digilio MC; Lorito M; Giordana B; Pennacchio F; Rao R Transgenic Res; 2008 Aug; 17(4):557-71. PubMed ID: 17851776 [TBL] [Abstract][Full Text] [Related]
9. The intestinal barrier in lepidopteran larvae: permeability of the peritrophic membrane and of the midgut epithelium to two biologically active peptides. Fiandra L; Casartelli M; Cermenati G; Burlini N; Giordana B J Insect Physiol; 2009 Jan; 55(1):10-8. PubMed ID: 18948109 [TBL] [Abstract][Full Text] [Related]
10. Expression of Aedes trypsin-modulating oostatic factor on the virion of TMV: A potential larvicide. Borovsky D; Rabindran S; Dawson WO; Powell CA; Iannotti DA; Morris TJ; Shabanowitz J; Hunt DF; DeBondt HL; DeLoof A Proc Natl Acad Sci U S A; 2006 Dec; 103(50):18963-8. PubMed ID: 17148608 [TBL] [Abstract][Full Text] [Related]
11. Liquefaction of Autographa californica nucleopolyhedrovirus-infected insects is dependent on the integrity of virus-encoded chitinase and cathepsin genes. Hawtin RE; Zarkowska T; Arnold K; Thomas CJ; Gooday GW; King LA; Kuzio JA; Possee RD Virology; 1997 Nov; 238(2):243-53. PubMed ID: 9400597 [TBL] [Abstract][Full Text] [Related]
12. Enhanced activity of an insecticidal protein, trypsin modulating oostatic factor (TMOF), through conjugation with aliphatic polyethylene glycol. Jeffers LA; Shen H; Khalil S; Bissinger BW; Brandt A; Gunnoe TB; Roe RM Pest Manag Sci; 2012 Jan; 68(1):49-59. PubMed ID: 21710555 [TBL] [Abstract][Full Text] [Related]
13. Mutagenesis of the active site coding region of the Autographa californica nucleopolyhedrovirus chiA gene. Thomas CJ; Gooday GW; King LA; Possee RD J Gen Virol; 2000 May; 81(Pt 5):1403-11. PubMed ID: 10769084 [TBL] [Abstract][Full Text] [Related]
14. Mutational analysis of active site residues of chitinase from Bombyx mori nucleopolyhedrovirus. Daimon T; Katsuma S; Shimada T Virus Res; 2007 Mar; 124(1-2):168-75. PubMed ID: 17145091 [TBL] [Abstract][Full Text] [Related]
15. CLONING AND EXPRESSING TRYPSIN MODULATING OOSTATIC FACTOR IN Chlorella desiccata TO CONTROL MOSQUITO LARVAE. Borovsky D; Sterner A; Powell CA Arch Insect Biochem Physiol; 2016 Jan; 91(1):17-36. PubMed ID: 26440910 [TBL] [Abstract][Full Text] [Related]
16. Feeding the mosquito Aedes aegypti with TMOF and its analogs; effect on trypsin biosynthesis and egg development. Borovsky D; Mahmood F Regul Pept; 1995 Jun; 57(3):273-81. PubMed ID: 7480877 [TBL] [Abstract][Full Text] [Related]
17. Effect of ace inhibitors and TMOF on growth, development, and trypsin activity of larval Spodoptera littoralis. Lemeire E; Borovsky D; Van Camp J; Smagghe G Arch Insect Biochem Physiol; 2008 Dec; 69(4):199-208. PubMed ID: 18949805 [TBL] [Abstract][Full Text] [Related]
19. Trypsin-modulating oostatic factor: a potential new larvicide for mosquito control. Borovsky D J Exp Biol; 2003 Nov; 206(Pt 21):3869-75. PubMed ID: 14506222 [TBL] [Abstract][Full Text] [Related]
20. Polymers for the stabilization and delivery of proteins topically and per os to the insect hemocoel through conjugation with aliphatic polyethylene glycol. Jeffers LA; Shen H; Bissinger BW; Khalil S; Gunnoe TB; Roe RM Pestic Biochem Physiol; 2014 Oct; 115():58-66. PubMed ID: 25307467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]