These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 20457533)

  • 1. Theoretical analyses of the transferred cross-saturation method.
    Matsumoto M; Ueda T; Shimada I
    J Magn Reson; 2010 Jul; 205(1):114-24. PubMed ID: 20457533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes.
    Jayalakshmi V; Krishna NR
    J Magn Reson; 2002 Mar; 155(1):106-18. PubMed ID: 11945039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-saturation and transferred cross-saturation experiments.
    Ueda T; Takeuchi K; Nishida N; Stampoulis P; Kofuku Y; Osawa M; Shimada I
    Q Rev Biophys; 2014 May; 47(2):143-87. PubMed ID: 24780282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid selective cross-saturation method for identification of proximal residue pairs in a protein-protein complex.
    Igarashi S; Osawa M; Takeuchi K; Ozawa S; Shimada I
    J Am Chem Soc; 2008 Sep; 130(36):12168-76. PubMed ID: 18707104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical analysis of the inter-ligand overhauser effect: a new approach for mapping structural relationships of macromolecular ligands.
    London RE
    J Magn Reson; 1999 Dec; 141(2):301-11. PubMed ID: 10579953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR analyses of the interaction between CCR5 and its ligand using functional reconstitution of CCR5 in lipid bilayers.
    Yoshiura C; Kofuku Y; Ueda T; Mase Y; Yokogawa M; Osawa M; Terashima Y; Matsushima K; Shimada I
    J Am Chem Soc; 2010 May; 132(19):6768-77. PubMed ID: 20423099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel NMR method for determining the interfaces of large protein-protein complexes.
    Takahashi H; Nakanishi T; Kami K; Arata Y; Shimada I
    Nat Struct Biol; 2000 Mar; 7(3):220-3. PubMed ID: 10700281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refinement of NMR structures using implicit solvent and advanced sampling techniques.
    Chen J; Im W; Brooks CL
    J Am Chem Soc; 2004 Dec; 126(49):16038-47. PubMed ID: 15584737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A combined STD-NMR/molecular modeling protocol for predicting the binding modes of the glycosidase inhibitors kifunensine and salacinol to Golgi alpha-mannosidase II.
    Wen X; Yuan Y; Kuntz DA; Rose DR; Pinto BM
    Biochemistry; 2005 May; 44(18):6729-37. PubMed ID: 15865418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR and molecular dynamics studies of the hydration of a zinc finger-DNA complex.
    Tsui V; Radhakrishnan I; Wright PE; Case DA
    J Mol Biol; 2000 Oct; 302(5):1101-17. PubMed ID: 11183777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the interface of a large protein complex by transferred cross-saturation measurements.
    Nakanishi T; Miyazawa M; Sakakura M; Terasawa H; Takahashi H; Shimada I
    J Mol Biol; 2002 Apr; 318(2):245-9. PubMed ID: 12051834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular recognition and screening using a 15N group selective STD NMR method.
    Kövér KE; Groves P; Jiménez-Barbero J; Batta G
    J Am Chem Soc; 2007 Sep; 129(37):11579-82. PubMed ID: 17722925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CORCEMA refinement of the bound ligand conformation within the protein binding pocket in reversibly forming weak complexes using STD-NMR intensities.
    Jayalakshmi V; Rama Krishna N
    J Magn Reson; 2004 May; 168(1):36-45. PubMed ID: 15082247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonequilibrium, multiple-timescale simulations of ligand-receptor interactions in structured protein systems.
    Zhang Y; Peters MH; Li Y
    Proteins; 2003 Aug; 52(3):339-48. PubMed ID: 12866048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure determination of protein-ligand complexes by transferred paramagnetic shifts.
    John M; Pintacuda G; Park AY; Dixon NE; Otting G
    J Am Chem Soc; 2006 Oct; 128(39):12910-6. PubMed ID: 17002387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein recognition by NMR.
    Wüthrich K
    Nat Struct Biol; 2000 Mar; 7(3):188-9. PubMed ID: 10700272
    [No Abstract]   [Full Text] [Related]  

  • 17. Geometry, energetics, and dynamics of hydrogen bonds in proteins: structural information derived from NMR scalar couplings.
    Gsponer J; Hopearuoho H; Cavalli A; Dobson CM; Vendruscolo M
    J Am Chem Soc; 2006 Nov; 128(47):15127-35. PubMed ID: 17117864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of ligand binding and protein dynamics in Bacillus subtilis chorismate mutase by transverse relaxation optimized spectroscopy-nuclear magnetic resonance.
    Eletsky A; Kienhöfer A; Hilvert D; Pervushin K
    Biochemistry; 2005 May; 44(18):6788-99. PubMed ID: 15865424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of protein/ligand interactions with NMR diffusion measurements: the importance of eliminating the protein background.
    Derrick TS; McCord EF; Larive CK
    J Magn Reson; 2002 Apr; 155(2):217-25. PubMed ID: 12036332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tilt angle dependence of cross-relaxation in off-resonance ROESY.
    Cutting B; Ghose R; Bodenhausen G
    J Magn Reson; 1999 Jun; 138(2):326-9. PubMed ID: 10341138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.