These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 20457604)

  • 1. The selenium-independent inherent pro-oxidant NADPH oxidase activity of mammalian thioredoxin reductase and its selenium-dependent direct peroxidase activities.
    Cheng Q; Antholine WE; Myers JM; Kalyanaraman B; Arnér ES; Myers CR
    J Biol Chem; 2010 Jul; 285(28):21708-23. PubMed ID: 20457604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and conformer analysis of a novel redox-active motif, Pro-Ala-Ser-Cys-Cys-Ser, in Drosophila thioredoxin reductase by semiempirical molecular orbital calculation.
    Kuwahara M; Tamura T; Kawamura K; Inagaki K
    Biosci Biotechnol Biochem; 2011; 75(3):516-21. PubMed ID: 21389620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selenium as an electron acceptor during the catalytic mechanism of thioredoxin reductase.
    Lothrop AP; Snider GW; Ruggles EL; Patel AS; Lees WJ; Hondal RJ
    Biochemistry; 2014 Feb; 53(4):654-63. PubMed ID: 24422500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity.
    Lee SR; Bar-Noy S; Kwon J; Levine RL; Stadtman TC; Rhee SG
    Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2521-6. PubMed ID: 10688911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mammalian thioredoxin reductase is irreversibly inhibited by dinitrohalobenzenes by alkylation of both the redox active selenocysteine and its neighboring cysteine residue.
    Nordberg J; Zhong L; Holmgren A; Arnér ES
    J Biol Chem; 1998 May; 273(18):10835-42. PubMed ID: 9556556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and mechanism of mammalian thioredoxin reductase: the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence.
    Zhong L; Arnér ES; Holmgren A
    Proc Natl Acad Sci U S A; 2000 May; 97(11):5854-9. PubMed ID: 10801974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. No selenium required: reactions catalyzed by mammalian thioredoxin reductase that are independent of a selenocysteine residue.
    Lothrop AP; Ruggles EL; Hondal RJ
    Biochemistry; 2009 Jul; 48(26):6213-23. PubMed ID: 19366212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations.
    Zhong L; Holmgren A
    J Biol Chem; 2000 Jun; 275(24):18121-8. PubMed ID: 10849437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thioredoxin reductase is irreversibly modified by curcumin: a novel molecular mechanism for its anticancer activity.
    Fang J; Lu J; Holmgren A
    J Biol Chem; 2005 Jul; 280(26):25284-90. PubMed ID: 15879598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The thioredoxin antioxidant system.
    Lu J; Holmgren A
    Free Radic Biol Med; 2014 Jan; 66():75-87. PubMed ID: 23899494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular bases of thioredoxin and thioredoxin reductase-mediated prooxidant actions of (-)-epigallocatechin-3-gallate.
    Zhang H; Cao D; Cui W; Ji M; Qian X; Zhong L
    Free Radic Biol Med; 2010 Dec; 49(12):2010-8. PubMed ID: 20951799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of high Mr thioredoxin reductase from Drosophila melanogaster.
    Bauer H; Massey V; Arscott LD; Schirmer RH; Ballou DP; Williams CH
    J Biol Chem; 2003 Aug; 278(35):33020-8. PubMed ID: 12816954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Details in the catalytic mechanism of mammalian thioredoxin reductase 1 revealed using point mutations and juglone-coupled enzyme activities.
    Xu J; Cheng Q; Arnér ES
    Free Radic Biol Med; 2016 May; 94():110-20. PubMed ID: 26898501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of thioredoxin and thioredoxin reductase by 4-hydroxy-2-nonenal in vitro and in vivo.
    Fang J; Holmgren A
    J Am Chem Soc; 2006 Feb; 128(6):1879-85. PubMed ID: 16464088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of an active site mutant of the selenoprotein thioredoxin reductase: the Ser-Cys-Cys-Ser motif of the insect orthologue is not sufficient to replace the Cys-Sec dyad in the mammalian enzyme.
    Johansson L; Arscott LD; Ballou DP; Williams CH; Arnér ES
    Free Radic Biol Med; 2006 Aug; 41(4):649-56. PubMed ID: 16863998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can Selenoenzymes Resist Electrophilic Modification? Evidence from Thioredoxin Reductase and a Mutant Containing α-Methylselenocysteine.
    Ste Marie EJ; Wehrle RJ; Haupt DJ; Wood NB; van der Vliet A; Previs MJ; Masterson DS; Hondal RJ
    Biochemistry; 2020 Sep; 59(36):3300-3315. PubMed ID: 32845139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effectors of thioredoxin reductase: Brevetoxins and manumycin-A.
    Tuladhar A; Hondal RJ; Colon R; Hernandez EL; Rein KS
    Comp Biochem Physiol C Toxicol Pharmacol; 2019 Mar; 217():76-86. PubMed ID: 30476593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thioredoxin and thioredoxin reductase control tissue factor activity by thiol redox-dependent mechanism.
    Wang P; Wu Y; Li X; Ma X; Zhong L
    J Biol Chem; 2013 Feb; 288(5):3346-58. PubMed ID: 23223577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the C-terminal redox center of high-Mr thioredoxin reductase by protein engineering and semisynthesis.
    Eckenroth BE; Lacey BM; Lothrop AP; Harris KM; Hondal RJ
    Biochemistry; 2007 Aug; 46(33):9472-83. PubMed ID: 17661444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why is mammalian thioredoxin reductase 1 so dependent upon the use of selenium?
    Lothrop AP; Snider GW; Ruggles EL; Hondal RJ
    Biochemistry; 2014 Jan; 53(3):554-65. PubMed ID: 24393022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.