These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 20458377)

  • 1. Suppression of O2 evolution from oxide cathode for lithium-ion batteries: VO(x)-impregnated 0.5Li2MnO3-0.5LiNi(0.4)Co(0.2)Mn(0.4)O2 cathode.
    Park KS; Benayad A; Park MS; Choi W; Im D
    Chem Commun (Camb); 2010 Jun; 46(23):4190-2. PubMed ID: 20458377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation.
    Cherkashinin G; Nikolowski K; Ehrenberg H; Jacke S; Dimesso L; Jaegermann W
    Phys Chem Chem Phys; 2012 Sep; 14(35):12321-31. PubMed ID: 22858824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO₂ and O₂ evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study.
    Wang H; Rus E; Sakuraba T; Kikuchi J; Kiya Y; Abruña HD
    Anal Chem; 2014 Jul; 86(13):6197-201. PubMed ID: 24845246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of high voltage (4.9 V) cycling LiNixCoyMn(1-x-y)O2 cathode materials for lithium rechargeable batteries.
    Nithya C; Kumari VS; Gopukumar S
    Phys Chem Chem Phys; 2011 Apr; 13(13):6125-32. PubMed ID: 21350759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[Ni(x)Li((1-2x)/3)Mn((2-x)/3)]O2 (0 ≤ x ≤ 0.5).
    Hy S; Felix F; Rick J; Su WN; Hwang BJ
    J Am Chem Soc; 2014 Jan; 136(3):999-1007. PubMed ID: 24364760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved kinetics of LiNi(1/3)Mn(1/3)Co(1/3)O2 cathode material through reduced graphene oxide networks.
    Jiang KC; Xin S; Lee JS; Kim J; Xiao XL; Guo YG
    Phys Chem Chem Phys; 2012 Feb; 14(8):2934-9. PubMed ID: 22274568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2.
    Armstrong AR; Holzapfel M; Novák P; Johnson CS; Kang SH; Thackeray MM; Bruce PG
    J Am Chem Soc; 2006 Jul; 128(26):8694-8. PubMed ID: 16802836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encapsulation of LiNi0.5Co0.2Mn0.3O2 with a thin inorganic electrolyte film to reduce gas evolution in the application of lithium ion batteries.
    Kim Y
    Phys Chem Chem Phys; 2013 May; 15(17):6400-5. PubMed ID: 23525240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the High-Voltage Cycling Performance of LiNi(0.5)Mn(0.3)Co(0.2)O2 by Retarding Its Interfacial Reaction with an Electrolyte by Atomic-Layer-Deposited Al2O3.
    Su Y; Cui S; Zhuo Z; Yang W; Wang X; Pan F
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25105-12. PubMed ID: 26501963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8 Co0.2 O2 nanotubes as the cathode materials of lithium ion batteries.
    Li X; Cheng F; Guo B; Chen J
    J Phys Chem B; 2005 Jul; 109(29):14017-24. PubMed ID: 16852760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of tetrahedral LiFeO2 and its behavior as a cathode in rechargeable lithium batteries.
    Armstrong AR; Tee DW; La Mantia F; Novák P; Bruce PG
    J Am Chem Soc; 2008 Mar; 130(11):3554-9. PubMed ID: 18284239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in-situ gas chromatography investigation into the suppression of oxygen gas evolution by coated amorphous cobalt-phosphate nanoparticles on oxide electrode.
    Gim J; Song J; Kim S; Jo J; Kim S; Yoon J; Kim D; Hong SG; Park JH; Mathew V; Han J; Song SJ; Kim J
    Sci Rep; 2016 Mar; 6():23394. PubMed ID: 27001370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of hierarchical three-dimensional vanadium oxide microstructures as high-capacity cathode materials for lithium-ion batteries.
    Pan A; Wu HB; Yu L; Zhu T; Lou XW
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3874-9. PubMed ID: 22809125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithium-cyclo-difluoromethane-1,1-bis(sulfonyl)imide as a stabilizing electrolyte additive for improved high voltage applications in lithium-ion batteries.
    Murmann P; Streipert B; Kloepsch R; Ignatiev N; Sartori P; Winter M; Cekic-Laskovic I
    Phys Chem Chem Phys; 2015 Apr; 17(14):9352-8. PubMed ID: 25760031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Energy Cathode Materials (Li2MnO3-LiMO2) for Lithium-Ion Batteries.
    Yu H; Zhou H
    J Phys Chem Lett; 2013 Apr; 4(8):1268-80. PubMed ID: 26282140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local coordination of Fe3+ in Li[Co(0.98)Fe(0.02)]O2 as cathode material for lithium ion batteries-multi-frequency EPR and Monte-Carlo Newman-superposition model analysis.
    Jakes P; Erdem E; Ozarowski A; van Tol J; Buckan R; Mikhailova D; Ehrenberg H; Eichel RA
    Phys Chem Chem Phys; 2011 May; 13(20):9344-52. PubMed ID: 21479310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas Evolution in Lithium-Ion Batteries: Solid versus Liquid Electrolyte.
    Strauss F; Teo JH; Schiele A; Bartsch T; Hatsukade T; Hartmann P; Janek J; Brezesinski T
    ACS Appl Mater Interfaces; 2020 May; 12(18):20462-20468. PubMed ID: 32275815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic Study of Parasitic Reactions in Lithium-Ion Batteries: A Case Study on LiNi(0.6)Mn(0.2)Co(0.2)O2.
    Zeng X; Xu GL; Li Y; Luo X; Maglia F; Bauer C; Lux SF; Paschos O; Kim SJ; Lamp P; Lu J; Amine K; Chen Z
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3446-51. PubMed ID: 26795232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An advanced cathode for Na-ion batteries with high rate and excellent structural stability.
    Lee DH; Xu J; Meng YS
    Phys Chem Chem Phys; 2013 Mar; 15(9):3304-12. PubMed ID: 23361584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.