BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 20458611)

  • 41. The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana.
    Suzuki N; Bajad S; Shuman J; Shulaev V; Mittler R
    J Biol Chem; 2008 Apr; 283(14):9269-75. PubMed ID: 18201973
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Specific interaction between tomato HsfA1 and HsfA2 creates hetero-oligomeric superactivator complexes for synergistic activation of heat stress gene expression.
    Chan-Schaminet KY; Baniwal SK; Bublak D; Nover L; Scharf KD
    J Biol Chem; 2009 Jul; 284(31):20848-57. PubMed ID: 19491106
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs.
    Meiri D; Breiman A
    Plant J; 2009 Aug; 59(3):387-99. PubMed ID: 19366428
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis.
    Sugio A; Dreos R; Aparicio F; Maule AJ
    Plant Cell; 2009 Feb; 21(2):642-54. PubMed ID: 19244141
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis.
    Guan Q; Lu X; Zeng H; Zhang Y; Zhu J
    Plant J; 2013 Jun; 74(5):840-51. PubMed ID: 23480361
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana.
    Lee JH; Schöffl F
    Mol Gen Genet; 1996 Aug; 252(1-2):11-9. PubMed ID: 8804399
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of heat-shock transcription factor-DNA binding in Arabidopsis suspension cultures by UV laser crosslinking.
    Zhang L; Eggers-Schumacher G; Schöffl F; Prändl R
    Plant J; 2001 Oct; 28(2):217-23. PubMed ID: 11722765
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need?
    Nover L; Bharti K; Döring P; Mishra SK; Ganguli A; Scharf KD
    Cell Stress Chaperones; 2001 Jul; 6(3):177-89. PubMed ID: 11599559
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transcriptional Profiling Reveals a Time-of-Day-Specific Role of REVEILLE 4/8 in Regulating the First Wave of Heat Shock-Induced Gene Expression in Arabidopsis.
    Li B; Gao Z; Liu X; Sun D; Tang W
    Plant Cell; 2019 Oct; 31(10):2353-2369. PubMed ID: 31358650
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Arabidopsis NAC transcription factor JUNGBRUNNEN1 affects thermomemory-associated genes and enhances heat stress tolerance in primed and unprimed conditions.
    Shahnejat-Bushehri S; Mueller-Roeber B; Balazadeh S
    Plant Signal Behav; 2012 Dec; 7(12):1518-21. PubMed ID: 23073024
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Heat shock factor HSFA2 fine-tunes resetting of thermomemory via plastidic metalloprotease FtsH6.
    Sedaghatmehr M; Stüwe B; Mueller-Roeber B; Balazadeh S
    J Exp Bot; 2022 Oct; 73(18):6394-6404. PubMed ID: 35705109
    [TBL] [Abstract][Full Text] [Related]  

  • 52. HsfB2b-mediated repression of PRR7 directs abiotic stress responses of the circadian clock.
    Kolmos E; Chow BY; Pruneda-Paz JL; Kay SA
    Proc Natl Acad Sci U S A; 2014 Nov; 111(45):16172-7. PubMed ID: 25352668
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The maize heat shock factor-binding protein paralogs EMP2 and HSBP2 interact non-redundantly with specific heat shock factors.
    Fu S; Rogowsky P; Nover L; Scanlon MJ
    Planta; 2006 Jun; 224(1):42-52. PubMed ID: 16331466
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Arabidopsis heat shock factor is constitutively active in Drosophila and human cells.
    Hübel A; Lee JH; Wu C; Schöffl F
    Mol Gen Genet; 1995 Jul; 248(2):136-41. PubMed ID: 7651336
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b overexpression enhances water productivity, resistance to drought, and infection.
    Bechtold U; Albihlal WS; Lawson T; Fryer MJ; Sparrow PA; Richard F; Persad R; Bowden L; Hickman R; Martin C; Beynon JL; Buchanan-Wollaston V; Baker NR; Morison JI; Schöffl F; Ott S; Mullineaux PM
    J Exp Bot; 2013 Aug; 64(11):3467-81. PubMed ID: 23828547
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tango between Ethylene and HSFA2 Settles Heat Tolerance.
    Singh G; Sarkar NK; Grover A
    Trends Plant Sci; 2021 May; 26(5):429-432. PubMed ID: 33744161
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis.
    Song C; Chung WS; Lim CO
    Mol Cells; 2016 Jun; 39(6):477-83. PubMed ID: 27109422
    [TBL] [Abstract][Full Text] [Related]  

  • 58. HSFA2 orchestrates transcriptional dynamics after heat stress in Arabidopsis thaliana.
    Lämke J; Brzezinka K; Bäurle I
    Transcription; 2016 Aug; 7(4):111-4. PubMed ID: 27383578
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Histone acetyltransferase GCN5 is essential for heat stress-responsive gene activation and thermotolerance in Arabidopsis.
    Hu Z; Song N; Zheng M; Liu X; Liu Z; Xing J; Ma J; Guo W; Yao Y; Peng H; Xin M; Zhou DX; Ni Z; Sun Q
    Plant J; 2015 Dec; 84(6):1178-91. PubMed ID: 26576681
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Heat stress-dependent DNA binding of Arabidopsis heat shock transcription factor HSF1 to heat shock gene promoters in Arabidopsis suspension culture cells in vivo.
    Zhang L; Lohmann C; Prändl R; Schöffl F
    Biol Chem; 2003 Jun; 384(6):959-63. PubMed ID: 12887064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.