These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 20459160)

  • 1. Structure and effective interactions in parallel monolayers of charged spherical colloids.
    Contreras-Aburto C; Méndez-Alcaraz JM; Castañeda-Priego R
    J Chem Phys; 2010 May; 132(17):174111. PubMed ID: 20459160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective interactions in polydisperse colloidal suspensions investigated using Ornstein-Zernike integral equations.
    Bryk P; Bryk M
    J Colloid Interface Sci; 2009 Oct; 338(1):92-8. PubMed ID: 19564024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective electrostatic interactions arising in core-shell charged microgel suspensions with added salt.
    Moncho-Jordá A; Anta JA; Callejas-Fernández J
    J Chem Phys; 2013 Apr; 138(13):134902. PubMed ID: 23574255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulation of the structural configuration of binary colloidal monolayers.
    Stirner T; Sun J
    Langmuir; 2005 Jul; 21(14):6636-41. PubMed ID: 15982077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renormalized charge in a two-dimensional model of colloidal suspension from hypernetted chain approach.
    Camargo M; Téllez G
    J Chem Phys; 2008 Apr; 128(13):134907. PubMed ID: 18397107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of the extended RSA models in studies of particle deposition at partially covered surfaces.
    Weroński P
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):1-24. PubMed ID: 16084783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-time self-diffusion of charged spherical colloidal particles in parallel planar layers.
    Contreras-Aburto C; Báez CA; Méndez-Alcaraz JM; Castañeda-Priego R
    J Chem Phys; 2014 Jun; 140(24):244116. PubMed ID: 24985627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of colloidal particles in a spherical cavity.
    Hsu JP; Jiang JM; Tseng S; Liu BT
    J Phys Chem B; 2005 Sep; 109(38):18048-54. PubMed ID: 16853318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic structure and thermodynamics of a core-softened model fluid: insights from grand canonical Monte Carlo simulations and integral equations theory.
    Pizio O; Dominguez H; Duda Y; Sokołowski S
    J Chem Phys; 2009 May; 130(17):174504. PubMed ID: 19425787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-body correlations among particles confined to a spherical surface: packing effects.
    Viveros-Méndez PX; Méndez-Alcaraz JM; González-Mozuelos P
    J Chem Phys; 2008 Jan; 128(1):014701. PubMed ID: 18190206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary electroviscous effect in a moderately concentrated suspension of charged spherical colloidal particles.
    Ohshima H
    Langmuir; 2007 Nov; 23(24):12061-6. PubMed ID: 17958453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple models for two-dimensional tunable colloidal crystals in rotating ac electric fields.
    Elsner N; Royall CP; Vincent B; Snoswell DR
    J Chem Phys; 2009 Apr; 130(15):154901. PubMed ID: 19388766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of organic ligands, electrostatic and magnetic interactions in formation of colloidal and interfacial inorganic nanostructures.
    Khomutov GB; Koksharov YA
    Adv Colloid Interface Sci; 2006 Sep; 122(1-3):119-47. PubMed ID: 16887093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Obtaining effective pair potentials in colloidal monolayers using a thermodynamically consistent inversion scheme.
    Law AD; Buzza DM
    Langmuir; 2010 May; 26(10):7107-16. PubMed ID: 20405861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of charged nanoparticles on colloidal forces: a molecular simulation study.
    Fazelabdolabadi B; Walz JY; Van Tassel PR
    J Phys Chem B; 2009 Oct; 113(42):13860-5. PubMed ID: 19548652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melting line of charged colloids from primitive model simulations.
    Hynninen AP; Dijkstra M
    J Chem Phys; 2005 Dec; 123(24):244902. PubMed ID: 16396568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal speciation dynamics in soft colloidal ligand suspensions. Electrostatic and site distribution aspects.
    Duval JF
    J Phys Chem A; 2009 Mar; 113(11):2275-93. PubMed ID: 19281140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional Monte Carlo simulations of internal aggregate structures in a colloidal dispersion composed of rod-like particles with magnetic moment normal to the particle axis.
    Satoh A
    J Colloid Interface Sci; 2008 Feb; 318(1):68-81. PubMed ID: 17988678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic and structural properties of mixed colloids represented by a hard-core two-Yukawa mixture model fluid: Monte Carlo simulations and an analytical theory.
    Yu YX; Jin L
    J Chem Phys; 2008 Jan; 128(1):014901. PubMed ID: 18190220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural properties of charge-stabilized ferrofluids under a magnetic field: a Brownian dynamics study.
    Mériguet G; Jardat M; Turq P
    J Chem Phys; 2004 Sep; 121(12):6078-85. PubMed ID: 15367036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.