BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 20459204)

  • 1. Development of a CFD boundary condition to model transient vapor absorption in the respiratory airways.
    Tian G; Longest PW
    J Biomech Eng; 2010 May; 132(5):051003. PubMed ID: 20459204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient absorption of inhaled vapors into a multilayer mucus-tissue-blood system.
    Tian G; Longest PW
    Ann Biomed Eng; 2010 Feb; 38(2):517-36. PubMed ID: 19826954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a new dosimetry program TAOCS to assess transient vapour absorption in the upper airways.
    Tian G; Longest PW
    Inhal Toxicol; 2010 Nov; 22(13):1047-63. PubMed ID: 21070181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deposition of naphthalene and tetradecane vapors in models of the human respiratory system.
    Zhang Z; Kleinstreuer C
    Inhal Toxicol; 2011 Jan; 23(1):44-57. PubMed ID: 21222561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model for the uptake of inhaled vapors in the nose of the dog during cyclic breathing.
    Gerde P; Dahl AR
    Toxicol Appl Pharmacol; 1991 Jun; 109(2):276-88. PubMed ID: 2068727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sites for uptake of inhaled vapors in beagle dogs.
    Dahl AR; Snipes MB; Gerde P
    Toxicol Appl Pharmacol; 1991 Jun; 109(2):263-75. PubMed ID: 2068726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical investigation of transient transport and deposition of microparticles under unsteady inspiratory flow in human upper airways.
    Naseri A; Shaghaghian S; Abouali O; Ahmadi G
    Respir Physiol Neurobiol; 2017 Oct; 244():56-72. PubMed ID: 28673875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A numerical model of nasal odorant transport for the analysis of human olfaction.
    Keyhani K; Scherer PW; Mozell MM
    J Theor Biol; 1997 Jun; 186(3):279-301. PubMed ID: 9219668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Derivation of mass transfer coefficients for transient uptake and tissue disposition of soluble and reactive vapors in lung airways.
    Asgharian B; Price OT; Schroeter JD; Kimbell JS; Jones L; Singal M
    Ann Biomed Eng; 2011 Jun; 39(6):1788-804. PubMed ID: 21347551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid computational fluid dynamics and physiologically based pharmacokinetic model for comparison of predicted tissue concentrations of acrylic acid and other vapors in the rat and human nasal cavities following inhalation exposure.
    Frederick CB; Gentry PR; Bush ML; Lomax LG; Black KA; Finch L; Kimbell JS; Morgan KT; Subramaniam RP; Morris JB; Ultman JS
    Inhal Toxicol; 2001 May; 13(5):359-76. PubMed ID: 11295868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biologically-based modeling insights in inhaled vapor absorption and dosimetry.
    Morris JB
    Pharmacol Ther; 2012 Dec; 136(3):401-13. PubMed ID: 22964085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analysis of pollutant gas transport and absorption in pulmonary airways.
    Grotberg JB; Sheth BV; Mockros LF
    J Biomech Eng; 1990 May; 112(2):168-76. PubMed ID: 2345447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mathematical model of bronchial absorption of vapors in the human lung and its significance in pharmacokinetic modeling.
    Shelley ML; Harris RL; Boehlecke BA
    SAR QSAR Environ Res; 1996; 5(4):221-53. PubMed ID: 9104782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ measurement of vapor uptake in the rodent upper respiratory tract.
    Morris JB; Cichocki JA; Smith GJ
    Curr Protoc Toxicol; 2013 Feb; Chapter 24():Unit 24.1. PubMed ID: 23408196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive determination of respiratory ozone absorption: the bolus-response method.
    Ultman JS; Ben-Jebria A; Hu SC
    Res Rep Health Eff Inst; 1994 Aug; (69):1-27; discussion 29-42. PubMed ID: 7999333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of realistic and idealized breathing patterns in computational models of airflow and vapor dosimetry in the rodent upper respiratory tract.
    Colby SM; Kabilan S; Jacob RE; Kuprat AP; Einstein DR; Corley RA
    Inhal Toxicol; 2016; 28(4):192-202. PubMed ID: 26986954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a hybrid computational fluid dynamics and physiologically based inhalation model for interspecies dosimetry extrapolation of acidic vapors in the upper airways.
    Frederick CB; Bush ML; Lomax LG; Black KA; Finch L; Kimbell JS; Morgan KT; Subramaniam RP; Morris JB; Ultman JS
    Toxicol Appl Pharmacol; 1998 Sep; 152(1):211-31. PubMed ID: 9772217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CFD-PBPK hybrid model for simulating gas and vapor uptake in the rat nose.
    Bush ML; Frederick CB; Kimbell JS; Ultman JS
    Toxicol Appl Pharmacol; 1998 May; 150(1):133-45. PubMed ID: 9630462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting dermal absorption of gas-phase chemicals: transient model development, evaluation, and application.
    Gong M; Zhang Y; Weschler CJ
    Indoor Air; 2014 Jun; 24(3):292-306. PubMed ID: 24245588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A case series on lung deposition analysis of inhaled medication using functional imaging based computational fluid dynamics in asthmatic patients: effect of upper airway morphology and comparison with in vivo data.
    Vinchurkar S; Backer LD; Vos W; Holsbeke CV; Backer JD; Backer WD
    Inhal Toxicol; 2012; 24(2):81-8. PubMed ID: 22260527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.