BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20459235)

  • 1. Feasibility of optoacoustic visualization of high-intensity focused ultrasound-induced thermal lesions in live tissue.
    Chitnis PV; Brecht HP; Su R; Oraevsky AA
    J Biomed Opt; 2010; 15(2):021313. PubMed ID: 20459235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An acoustic backscatter-based method for localization of lesions induced by high-intensity focused ultrasound.
    Zheng X; Vaezy S
    Ultrasound Med Biol; 2010 Apr; 36(4):610-22. PubMed ID: 20211516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of photoacoustic imaging and high-intensity focused ultrasound.
    Cui H; Staley J; Yang X
    J Biomed Opt; 2010; 15(2):021312. PubMed ID: 20459234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue.
    Alhamami M; Kolios MC; Tavakkoli J
    Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental methods for improved spatial control of thermal lesions in magnetic resonance-guided focused ultrasound ablation.
    Viallon M; Petrusca L; Auboiroux V; Goget T; Baboi L; Becker CD; Salomir R
    Ultrasound Med Biol; 2013 Sep; 39(9):1580-95. PubMed ID: 23820250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HIFU-induced changes in optical scattering and absorption of tissue over nine orders of thermal dose.
    Raymond JL; Cleveland RO; Roy RA
    Phys Med Biol; 2018 Dec; 63(24):245001. PubMed ID: 30524076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and evaluation of a transesophageal HIFU probe for ultrasound-guided cardiac ablation: simulation of a HIFU mini-maze procedure and preliminary ex vivo trials.
    Constanciel E; N'Djin WA; Bessière F; Chavrier F; Grinberg D; Vignot A; Chevalier P; Chapelon JY; Lafon C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1868-83. PubMed ID: 24658718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer.
    Jeong JS; Cannata JM; Shung KK
    Phys Med Biol; 2010 Apr; 55(7):1889-902. PubMed ID: 20224162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Annular phased array transducer for preclinical testing of anti-cancer drug efficacy on small animals.
    Kujawska T; Secomski W; Byra M; Postema M; Nowicki A
    Ultrasonics; 2017 Apr; 76():92-98. PubMed ID: 28086110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calibration of ultrasound backscatter temperature imaging for high-intensity focused ultrasound treatment planning.
    Civale J; Rivens I; Ter Haar G; Morris H; Coussios C; Friend P; Bamber J
    Ultrasound Med Biol; 2013 Sep; 39(9):1596-612. PubMed ID: 23830100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging high-intensity focused ultrasound-induced tissue denaturation by multispectral photoacoustic method: an ex vivo study.
    Sun Y; O'Neill B
    Appl Opt; 2013 Mar; 52(8):1764-70. PubMed ID: 23478783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility study on photoacoustic guidance for high-intensity focused ultrasound-induced hemostasis.
    Nguyen VP; Kim J; Ha KL; Oh J; Kang HW
    J Biomed Opt; 2014; 19(10):105010. PubMed ID: 25354118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a fiber-optic displacement sensor for measurements in high-intensity focused ultrasound fields.
    Haller J; Wilkens V; Jenderka KV; Koch C
    J Acoust Soc Am; 2011 Jun; 129(6):3676-81. PubMed ID: 21682392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-frequency (20-MHz) high-intensity focused ultrasound (HIFU) system for dermal intervention: Preclinical evaluation in skin equivalents.
    Bove T; Zawada T; Serup J; Jessen A; Poli M
    Skin Res Technol; 2019 Mar; 25(2):217-228. PubMed ID: 30620418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time monitoring of high-intensity focused ultrasound treatment using axial strain and axial-shear strain elastograms.
    Xia R; Thittai AK
    Ultrasound Med Biol; 2014 Mar; 40(3):485-95. PubMed ID: 24361216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Vivo application and localization of transcranial focused ultrasound using dual-mode ultrasound arrays.
    Haritonova A; Liu D; Ebbini ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2031-42. PubMed ID: 26670845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A targeting method based on acoustic backscatter for treatment planning in tissue ablation using focused ultrasound.
    Zheng X; Vaezy S
    IEEE Trans Biomed Eng; 2010 Jan; 57(1):71-9. PubMed ID: 19605311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel high intensity focused ultrasound robotic system for breast cancer treatment.
    Yonetsuji T; Ando T; Wang J; Fujiwara K; Itani K; Azuma T; Yoshinaka K; Sasaki A; Takagi S; Kobayashi E; Liao H; Matsumoto Y; Sakuma I
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):388-95. PubMed ID: 24505785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative measurement and real-time tracking of high intensity focused ultrasound using phase-sensitive optical coherence tomography: Feasibility study.
    Le N; Song S; Nabi G; Wang R; Huang Z
    Int J Hyperthermia; 2016 Sep; 32(6):713-22. PubMed ID: 27380284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High intensity focused ultrasound (HIFU) focal spot localization using harmonic motion imaging (HMI).
    Han Y; Hou GY; Wang S; Konofagou E
    Phys Med Biol; 2015 Aug; 60(15):5911-24. PubMed ID: 26184846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.