These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 20459478)

  • 81. Effect of drafting on work intensity in classical cross-country skiing.
    Bilodeau B; Roy B; Boulay MR
    Int J Sports Med; 1995 Apr; 16(3):190-5. PubMed ID: 7649711
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Mechanical energy and propulsion mechanics in roller-skiing double-poling at increasing speeds.
    Danielsen J; Sandbakk Ø; McGhie D; Ettema G
    PLoS One; 2021; 16(7):e0255202. PubMed ID: 34320011
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The Influence of Pole Length on Performance, O
    Losnegard T; Myklebust H; Skattebo Ø; Stadheim HK; Sandbakk Ø; Hallén J
    Int J Sports Physiol Perform; 2017 Feb; 12(2):211-217. PubMed ID: 27193356
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Gender differences in power production, energetic capacity and efficiency of elite cross‑country skiers during whole‑body, upper‑body, and arm poling.
    Hegge AM; Bucher E; Ettema G; Faude O; Holmberg HC; Sandbakk Ø
    Eur J Appl Physiol; 2016 Feb; 116(2):291-300. PubMed ID: 26476546
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Scaling maximal oxygen uptake to predict performance in elite-standard men cross-country skiers.
    Carlsson T; Carlsson M; Felleki M; Hammarström D; Heil D; Malm C; Tonkonogi M
    J Sports Sci; 2013; 31(16):1753-60. PubMed ID: 23829681
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Physiological responses and performance factors for double-poling and diagonal-stride treadmill roller-skiing time-trial exercise.
    Andersson EP; Lögdal N; Byrne D; Jones TW
    Eur J Appl Physiol; 2023 Nov; 123(11):2495-2509. PubMed ID: 37302104
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Propulsive and gliding phases in four cross-country skiing techniques.
    Bilodeau B; Boulay MR; Roy B
    Med Sci Sports Exerc; 1992 Aug; 24(8):917-25. PubMed ID: 1406178
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Biomechanical analysis of double poling in elite cross-country skiers.
    Holmberg HC; Lindinger S; Stöggl T; Eitzlmair E; Müller E
    Med Sci Sports Exerc; 2005 May; 37(5):807-18. PubMed ID: 15870635
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Biomechanical analysis of the herringbone technique as employed by elite cross-country skiers.
    Andersson E; Stöggl T; Pellegrini B; Sandbakk O; Ettema G; Holmberg HC
    Scand J Med Sci Sports; 2014 Jun; 24(3):542-52. PubMed ID: 23206288
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Changes in upper and lower body muscle involvement at increasing double poling velocities: an ecological study.
    Zoppirolli C; Pellegrini B; Modena R; Savoldelli A; Bortolan L; Schena F
    Scand J Med Sci Sports; 2017 Nov; 27(11):1292-1299. PubMed ID: 27726202
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The effects of the arm swing on biomechanical and physiological aspects of roller ski skating.
    Hegge AM; Ettema G; de Koning JJ; Rognstad AB; Hoset M; Sandbakk Ø
    Hum Mov Sci; 2014 Aug; 36():1-11. PubMed ID: 24893335
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Biomechanical pole and leg characteristics during uphill diagonal roller skiing.
    Lindinger SJ; Göpfert C; Stöggl T; Müller E; Holmberg HC
    Sports Biomech; 2009 Nov; 8(4):318-33. PubMed ID: 20169761
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The effects of skiing velocity on mechanical aspects of diagonal cross-country skiing.
    Andersson E; Pellegrini B; Sandbakk O; Stüggl T; Holmberg HC
    Sports Biomech; 2014 Sep; 13(3):267-84. PubMed ID: 25325771
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Leg and arm lactate and substrate kinetics during exercise.
    Van Hall G; Jensen-Urstad M; Rosdahl H; Holmberg HC; Saltin B; Calbet JA
    Am J Physiol Endocrinol Metab; 2003 Jan; 284(1):E193-205. PubMed ID: 12388120
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Evaluation of an upper-body strength test for the cross-country skiing sprint.
    Stöggl T; Lindinger S; Müller E
    Med Sci Sports Exerc; 2007 Jul; 39(7):1160-9. PubMed ID: 17596785
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Metabolic Responses and Pacing Strategies during Successive Sprint Skiing Time Trials.
    Andersson E; Holmberg HC; Ørtenblad N; Björklund G
    Med Sci Sports Exerc; 2016 Dec; 48(12):2544-2554. PubMed ID: 27414686
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Effects of speed on temporal patterns in classical style and freestyle cross-country skiing.
    Nilsson J; Tveit P; Eikrehagen O
    Sports Biomech; 2004 Jan; 3(1):85-107. PubMed ID: 15079990
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Validation of physiological tests in relation to competitive performances in elite male distance cross-country skiing.
    Carlsson M; Carlsson T; Hammarström D; Tiivel T; Malm C; Tonkonogi M
    J Strength Cond Res; 2012 Jun; 26(6):1496-504. PubMed ID: 22614140
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Energy system contributions and determinants of performance in sprint cross-country skiing.
    Andersson E; Björklund G; Holmberg HC; Ørtenblad N
    Scand J Med Sci Sports; 2017 Apr; 27(4):385-398. PubMed ID: 26923666
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Reliability and validity of test concepts for the cross-country skiing sprint.
    Stöggl T; Lindinger S; Müller E
    Med Sci Sports Exerc; 2006 Mar; 38(3):586-91. PubMed ID: 16540849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.