These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 20459513)

  • 21. Environmental controls on the landscape-scale biogeography of stream bacterial communities.
    Fierer N; Morse JL; Berthrong ST; Bernhardt ES; Jackson RB
    Ecology; 2007 Sep; 88(9):2162-73. PubMed ID: 17918395
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biophysical controls on cluster dynamics and architectural differentiation of microbial biofilms in contrasting flow environments.
    Hödl I; Mari L; Bertuzzo E; Suweis S; Besemer K; Rinaldo A; Battin TJ
    Environ Microbiol; 2014 Mar; 16(3):802-12. PubMed ID: 23879839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tracking the autochthonous carbon transfer in stream biofilm food webs.
    Risse-Buhl U; Trefzger N; Seifert AG; Schönborn W; Gleixner G; Küsel K
    FEMS Microbiol Ecol; 2012 Jan; 79(1):118-31. PubMed ID: 22067054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dispersal from Microbial Biofilms.
    Barraud N; Kjelleberg S; Rice SA
    Microbiol Spectr; 2015 Dec; 3(6):. PubMed ID: 27337281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Altitudinal patterns of diversity and functional traits of metabolically active microorganisms in stream biofilms.
    Wilhelm L; Besemer K; Fragner L; Peter H; Weckwerth W; Battin TJ
    ISME J; 2015 Nov; 9(11):2454-64. PubMed ID: 25978543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Environmental heterogeneity promotes spatial resilience of phototrophic biofilms in streambeds.
    Dzubakova K; Peter H; Bertuzzo E; Juez C; Franca MJ; Rinaldo A; Battin TJ
    Biol Lett; 2018 Oct; 14(10):. PubMed ID: 30305460
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow.
    Stoodley P; Lewandowski Z; Boyle JD; Lappin-Scott HM
    Environ Microbiol; 1999 Oct; 1(5):447-55. PubMed ID: 11207765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluvial network organization imprints on microbial co-occurrence networks.
    Widder S; Besemer K; Singer GA; Ceola S; Bertuzzo E; Quince C; Sloan WT; Rinaldo A; Battin TJ
    Proc Natl Acad Sci U S A; 2014 Sep; 111(35):12799-804. PubMed ID: 25136087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of dissolved organic matter and inorganic nutrients on the biofilm bacterial community on artificial substrates in a northeastern Ohio, USA, stream.
    Olapade OA; Leff LG
    Can J Microbiol; 2006 Jun; 52(6):540-9. PubMed ID: 16788722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic switching enables efficient bacterial colonization in flow.
    Kannan A; Yang Z; Kim MK; Stone HA; Siryaporn A
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5438-5443. PubMed ID: 29735692
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metal concentrations in stream biofilm and sediments and their potential to explain biofilm microbial community structure.
    Ancion PY; Lear G; Dopheide A; Lewis GD
    Environ Pollut; 2013 Feb; 173():117-24. PubMed ID: 23202641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial and temporal heterogeneity of the bacterial communities in stream epilithic biofilms.
    Lear G; Anderson MJ; Smith JP; Boxen K; Lewis GD
    FEMS Microbiol Ecol; 2008 Sep; 65(3):463-73. PubMed ID: 18637965
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of current velocity on the nascent architecture of stream microbial biofilms.
    Battin TJ; Kaplan LA; Newbold JD; Cheng X; Hansen C
    Appl Environ Microbiol; 2003 Sep; 69(9):5443-52. PubMed ID: 12957933
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biofilm formation at warming temperature: acceleration of microbial colonization and microbial interactive effects.
    Diaz Villanueva V; Font J; Schwartz T; Romani AM
    Biofouling; 2011 Jan; 27(1):59-71. PubMed ID: 21113861
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Habitat heterogeneity and associated microbial community structure in a small-scale floodplain hyporheic flow path.
    Lowell JL; Gordon N; Engstrom D; Stanford JA; Holben WE; Gannon JE
    Microb Ecol; 2009 Oct; 58(3):611-20. PubMed ID: 19462196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modelling the effects of dispersal mechanisms and hydrodynamic regimes upon the structure of microbial communities within fluvial biofilms.
    Woodcock S; Besemer K; Battin TJ; Curtis TP; Sloan WT
    Environ Microbiol; 2013 Apr; 15(4):1216-25. PubMed ID: 23240857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial metacommunity organization in a highly connected aquatic system.
    Langenheder S; Wang J; Karjalainen SM; Laamanen TM; Tolonen KT; Vilmi A; Heino J
    FEMS Microbiol Ecol; 2017 Apr; 93(4):. PubMed ID: 27810879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial Patterns in Biofilm Diversity across Hierarchical Levels of River-Floodplain Landscapes.
    Peipoch M; Jones R; Valett HM
    PLoS One; 2015; 10(12):e0144303. PubMed ID: 26630382
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quality of dissolved organic matter affects planktonic but not biofilm bacterial production in streams.
    Kamjunke N; Herzsprung P; Neu TR
    Sci Total Environ; 2015 Feb; 506-507():353-60. PubMed ID: 25460970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactive effects of discharge reduction and fine sediments on stream biofilm metabolism.
    Pérez-Calpe AV; Larrañaga A; von Schiller D; Elosegi A
    PLoS One; 2021; 16(2):e0246719. PubMed ID: 33571231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.