These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Blagoev B; Kratchmarova I; Ong SE; Nielsen M; Foster LJ; Mann M Nat Biotechnol; 2003 Mar; 21(3):315-8. PubMed ID: 12577067 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography. Huang H; Haar Petersen M; Ibañez-Vea M; Lassen PS; Larsen MR; Palmisano G Mol Cell Proteomics; 2016 Oct; 15(10):3282-3296. PubMed ID: 27281782 [TBL] [Abstract][Full Text] [Related]
5. Development of a 5-plex SILAC method tuned for the quantitation of tyrosine phosphorylation dynamics. Tzouros M; Golling S; Avila D; Lamerz J; Berrera M; Ebeling M; Langen H; Augustin A Mol Cell Proteomics; 2013 Nov; 12(11):3339-49. PubMed ID: 23882028 [TBL] [Abstract][Full Text] [Related]
6. Characterization of ubiquitination dependent dynamics in growth factor receptor signaling by quantitative proteomics. Akimov V; Rigbolt KT; Nielsen MM; Blagoev B Mol Biosyst; 2011 Dec; 7(12):3223-33. PubMed ID: 21956701 [TBL] [Abstract][Full Text] [Related]
7. Identifying novel targets of oncogenic EGF receptor signaling in lung cancer through global phosphoproteomics. Zhang X; Belkina N; Jacob HK; Maity T; Biswas R; Venugopalan A; Shaw PG; Kim MS; Chaerkady R; Pandey A; Guha U Proteomics; 2015 Jan; 15(2-3):340-55. PubMed ID: 25404012 [TBL] [Abstract][Full Text] [Related]
8. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Blagoev B; Ong SE; Kratchmarova I; Mann M Nat Biotechnol; 2004 Sep; 22(9):1139-45. PubMed ID: 15314609 [TBL] [Abstract][Full Text] [Related]
9. Dynamic profiling of the post-translational modifications and interaction partners of epidermal growth factor receptor signaling after stimulation by epidermal growth factor using Extended Range Proteomic Analysis (ERPA). Wu SL; Kim J; Bandle RW; Liotta L; Petricoin E; Karger BL Mol Cell Proteomics; 2006 Sep; 5(9):1610-27. PubMed ID: 16799092 [TBL] [Abstract][Full Text] [Related]
10. Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Parker BL; Yang G; Humphrey SJ; Chaudhuri R; Ma X; Peterman S; James DE Sci Signal; 2015 Jun; 8(380):rs6. PubMed ID: 26060331 [TBL] [Abstract][Full Text] [Related]
11. Differential activation of epidermal growth factor (EGF) receptor downstream signaling pathways by betacellulin and EGF. Saito T; Okada S; Ohshima K; Yamada E; Sato M; Uehara Y; Shimizu H; Pessin JE; Mori M Endocrinology; 2004 Sep; 145(9):4232-43. PubMed ID: 15192046 [TBL] [Abstract][Full Text] [Related]
15. Growth hormone-induced phosphorylation of epidermal growth factor (EGF) receptor in 3T3-F442A cells. Modulation of EGF-induced trafficking and signaling. Huang Y; Kim SO; Jiang J; Frank SJ J Biol Chem; 2003 May; 278(21):18902-13. PubMed ID: 12642595 [TBL] [Abstract][Full Text] [Related]
16. Systematic analysis of the epidermal growth factor receptor by mass spectrometry reveals stimulation-dependent multisite phosphorylation. Boeri Erba E; Bergatto E; Cabodi S; Silengo L; Tarone G; Defilippi P; Jensen ON Mol Cell Proteomics; 2005 Aug; 4(8):1107-21. PubMed ID: 15901825 [TBL] [Abstract][Full Text] [Related]
17. Ligand regulates epidermal growth factor receptor kinase specificity: activation increases preference for GAB1 and SHC versus autophosphorylation sites. Fan YX; Wong L; Deb TB; Johnson GR J Biol Chem; 2004 Sep; 279(37):38143-50. PubMed ID: 15231819 [TBL] [Abstract][Full Text] [Related]
18. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Zhang Y; Wolf-Yadlin A; Ross PL; Pappin DJ; Rush J; Lauffenburger DA; White FM Mol Cell Proteomics; 2005 Sep; 4(9):1240-50. PubMed ID: 15951569 [TBL] [Abstract][Full Text] [Related]
19. Integrating Phosphoproteomics and Bioinformatics to Study Brassinosteroid-Regulated Phosphorylation Dynamics in Arabidopsis. Lin LL; Hsu CL; Hu CW; Ko SY; Hsieh HL; Huang HC; Juan HF BMC Genomics; 2015 Jul; 16(1):533. PubMed ID: 26187819 [TBL] [Abstract][Full Text] [Related]
20. Towards systematic discovery of signaling networks in budding yeast filamentous growth stress response using interventional phosphorylation data. Zhang Y; Kweon HK; Shively C; Kumar A; Andrews PC PLoS Comput Biol; 2013; 9(6):e1003077. PubMed ID: 23825934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]