These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2045983)

  • 1. Effects of osteochondral defect size on cartilage contact stress.
    Brown TD; Pope DF; Hale JE; Buckwalter JA; Brand RA
    J Orthop Res; 1991 Jul; 9(4):559-67. PubMed ID: 2045983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteochondral defects in the human knee: influence of defect size on cartilage rim stress and load redistribution to surrounding cartilage.
    Guettler JH; Demetropoulos CK; Yang KH; Jurist KA
    Am J Sports Med; 2004 Sep; 32(6):1451-8. PubMed ID: 15310570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the effects of knee focal articular surface injury with a patient-specific finite element model.
    Papaioannou G; Demetropoulos CK; King YH
    Knee; 2010 Jan; 17(1):61-8. PubMed ID: 19477131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the size and location of osteochondral defects in degenerative arthritis. A finite element simulation.
    Peña E; Calvo B; Martínez MA; Doblaré M
    Comput Biol Med; 2007 Mar; 37(3):376-87. PubMed ID: 16796999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of angled osteochondral grafting on contact pressure: a biomechanical study.
    Koh JL; Kowalski A; Lautenschlager E
    Am J Sports Med; 2006 Jan; 34(1):116-9. PubMed ID: 16282582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteochondral lesions of the talus: effect of defect size and plantarflexion angle on ankle joint stresses.
    Hunt KJ; Lee AT; Lindsey DP; Slikker W; Chou LB
    Am J Sports Med; 2012 Apr; 40(4):895-901. PubMed ID: 22366518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteochondral autograft transplantation in the porcine knee.
    Harman BD; Weeden SH; Lichota DK; Brindley GW
    Am J Sports Med; 2006 Jun; 34(6):913-8. PubMed ID: 16710049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective repair of a fresh osteochondral defect in the rabbit knee joint by articulated joint distraction following subchondral drilling.
    Kajiwara R; Ishida O; Kawasaki K; Adachi N; Yasunaga Y; Ochi M
    J Orthop Res; 2005 Jul; 23(4):909-15. PubMed ID: 16023007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of osteochondral defects on articular cartilage. Contact pressures studied in dog knees.
    Nelson BH; Anderson DD; Brand RA; Brown TD
    Acta Orthop Scand; 1988 Oct; 59(5):574-9. PubMed ID: 3188865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Mega-OATS technique--autologous osteochondral transplantation as a salvage procedure for large osteochondral defects of the femoral condyle].
    Brucker PU; Braun S; Imhoff AB
    Oper Orthop Traumatol; 2008 Sep; 20(3):188-98. PubMed ID: 19169787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consequences of Progressive Full-Thickness Focal Chondral Defects Involving the Medial and Lateral Femoral Condyles After Meniscectomy: A Biomechanical Study Using a Goat Model.
    Koh JL; Jacob KC; Kulkarni R; Vasilion Z; Amirouche FML
    Orthop J Sports Med; 2022 Mar; 10(3):23259671221078598. PubMed ID: 35356308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro contact stress distribution on the femoral condyles.
    Brown TD; Shaw DT
    J Orthop Res; 1984; 2(2):190-9. PubMed ID: 6548513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element simulations of a focal knee resurfacing implant applied to localized cartilage defects in a sheep model.
    Manda K; Ryd L; Eriksson A
    J Biomech; 2011 Mar; 44(5):794-801. PubMed ID: 21300358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of focal articular defects on intra-tissue strains in the surrounding and opposing cartilage.
    Gratz KR; Wong BL; Bae WC; Sah RL
    Biorheology; 2008; 45(3-4):193-207. PubMed ID: 18836224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the influence of mechanical conditions in osteochondral defect healing.
    Duda GN; Maldonado ZM; Klein P; Heller MO; Burns J; Bail H
    J Biomech; 2005 Apr; 38(4):843-51. PubMed ID: 15713306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of the small and unstable autologous osteochondral graft on repairing the full-thickness large articular cartilage defect in a rabbit model.
    Makino T; Fujioka H; Yoshiya S; Terukina M; Matsui N; Kurosaka M
    Kobe J Med Sci; 2002 Aug; 48(3-4):97-104. PubMed ID: 12502901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High tibial osteotomy for unloading osteochondral defects in the medial compartment of the knee.
    Mina C; Garrett WE; Pietrobon R; Glisson R; Higgins L
    Am J Sports Med; 2008 May; 36(5):949-55. PubMed ID: 18413679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of scaffold stiffness on subchondral bone and subsequent cartilage regeneration in an ovine model of osteochondral defect healing.
    Schlichting K; Schell H; Kleemann RU; Schill A; Weiler A; Duda GN; Epari DR
    Am J Sports Med; 2008 Dec; 36(12):2379-91. PubMed ID: 18952905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autogenous osteochondral morselised grafts for full thickness osteochondral defects in the knee joints of pigs.
    Mahadev A; Mahara DP; Chang P; Mitra AK; Tay BK; Sim CS
    Singapore Med J; 2001 Sep; 42(9):410-6. PubMed ID: 11811607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue-engineered composites for the repair of large osteochondral defects.
    Schaefer D; Martin I; Jundt G; Seidel J; Heberer M; Grodzinsky A; Bergin I; Vunjak-Novakovic G; Freed LE
    Arthritis Rheum; 2002 Sep; 46(9):2524-34. PubMed ID: 12355501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.