BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 20460185)

  • 1. Regulation of sulfate transport and assimilation in plants.
    Takahashi H
    Int Rev Cell Mol Biol; 2010; 281():129-59. PubMed ID: 20460185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromate differentially affects the expression of a high-affinity sulfate transporter and isoforms of components of the sulfate assimilatory pathway in Zea mays (L.).
    Schiavon M; Wirtz M; Borsa P; Quaggiotti S; Hell R; Malagoli M
    Plant Biol (Stuttg); 2007 Sep; 9(5):662-71. PubMed ID: 17853366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfate transport systems in plants: functional diversity and molecular mechanisms underlying regulatory coordination.
    Takahashi H
    J Exp Bot; 2019 Aug; 70(16):4075-4087. PubMed ID: 30907420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis.
    Kawashima CG; Matthewman CA; Huang S; Lee BR; Yoshimoto N; Koprivova A; Rubio-Somoza I; Todesco M; Rathjen T; Saito K; Takahashi H; Dalmay T; Kopriva S
    Plant J; 2011 Jun; 66(5):863-76. PubMed ID: 21401744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake, allocation and signaling of nitrate.
    Wang YY; Hsu PK; Tsay YF
    Trends Plant Sci; 2012 Aug; 17(8):458-67. PubMed ID: 22658680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The transcription factor PHR1 plays a key role in the regulation of sulfate shoot-to-root flux upon phosphate starvation in Arabidopsis.
    Rouached H; Secco D; Arpat B; Poirier Y
    BMC Plant Biol; 2011 Jan; 11():19. PubMed ID: 21261953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana.
    Liang G; Yang F; Yu D
    Plant J; 2010 Jun; 62(6):1046-57. PubMed ID: 20374528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miR395 is a general component of the sulfate assimilation regulatory network in Arabidopsis.
    Matthewman CA; Kawashima CG; Húska D; Csorba T; Dalmay T; Kopriva S
    FEBS Lett; 2012 Sep; 586(19):3242-8. PubMed ID: 22771787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Cadmium Treatment on the Uptake and Translocation of Sulfate in Arabidopsis thaliana.
    Yamaguchi C; Takimoto Y; Ohkama-Ohtsu N; Hokura A; Shinano T; Nakamura T; Suyama A; Maruyama-Nakashita A
    Plant Cell Physiol; 2016 Nov; 57(11):2353-2366. PubMed ID: 27590710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of sulfur starvation on cysteine biosynthesis in T-DNA mutants deficient for compartment-specific serine-acetyltransferase.
    Krueger S; Donath A; Lopez-Martin MC; Hoefgen R; Gotor C; Hesse H
    Amino Acids; 2010 Oct; 39(4):1029-42. PubMed ID: 20379751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Posttranscriptional regulation of high-affinity sulfate transporters in Arabidopsis by sulfur nutrition.
    Yoshimoto N; Inoue E; Watanabe-Takahashi A; Saito K; Takahashi H
    Plant Physiol; 2007 Oct; 145(2):378-88. PubMed ID: 17720755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compartmentalization and Regulation of Sulfate Assimilation Pathways in Plants.
    Bohrer AS; Takahashi H
    Int Rev Cell Mol Biol; 2016; 326():1-31. PubMed ID: 27572125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and functional characterization of the sulfate transporter gene GmSULTR1;2b in soybean.
    Ding Y; Zhou X; Zuo L; Wang H; Yu D
    BMC Genomics; 2016 May; 17():373. PubMed ID: 27206527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of molybdenum deficiency and defects in molybdate transporter MOT1 on transcript accumulation and nitrogen/sulphur metabolism in Arabidopsis thaliana.
    Ide Y; Kusano M; Oikawa A; Fukushima A; Tomatsu H; Saito K; Hirai MY; Fujiwara T
    J Exp Bot; 2011 Feb; 62(4):1483-97. PubMed ID: 21131548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots.
    Yoshimoto N; Takahashi H; Smith FW; Yamaya T; Saito K
    Plant J; 2002 Feb; 29(4):465-73. PubMed ID: 11846879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfate permeasesphylogenetic diversity of sulfate transport.
    Piłsyk S; Paszewski A
    Acta Biochim Pol; 2009; 56(3):375-84. PubMed ID: 19724780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-Specific Root Transport of Nutrient Gives Access to an Early Nutritional Indicator: The Case of Sulfate and Molybdate.
    Maillard A; Sorin E; Etienne P; Diquélou S; Koprivova A; Kopriva S; Arkoun M; Gallardo K; Turner M; Cruz F; Yvin JC; Ourry A
    PLoS One; 2016; 11(11):e0166910. PubMed ID: 27870884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature.
    Kataoka T; Hayashi N; Yamaya T; Takahashi H
    Plant Physiol; 2004 Dec; 136(4):4198-204. PubMed ID: 15531709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfate availability affects ABA levels and germination response to ABA and salt stress in Arabidopsis thaliana.
    Cao MJ; Wang Z; Zhao Q; Mao JL; Speiser A; Wirtz M; Hell R; Zhu JK; Xiang CB
    Plant J; 2014 Feb; 77(4):604-15. PubMed ID: 24330104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes.
    Takahashi H; Kopriva S; Giordano M; Saito K; Hell R
    Annu Rev Plant Biol; 2011; 62():157-84. PubMed ID: 21370978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.