These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2046045)

  • 41. Response of anterior parietal cortex to cutaneous flutter versus vibration.
    Tommerdahl M; Delemos KA; Whitsel BL; Favorov OV; Metz CB
    J Neurophysiol; 1999 Jul; 82(1):16-33. PubMed ID: 10400931
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Vibration-entrained and premovement activity in monkey primary somatosensory cortex.
    Lebedev MA; Denton JM; Nelson RJ
    J Neurophysiol; 1994 Oct; 72(4):1654-73. PubMed ID: 7823093
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantitative and temporal relationship between local cerebral blood flow and neuronal activation induced by somatosensory stimulation in rats.
    Matsuura T; Kanno I
    Neurosci Res; 2001 Jul; 40(3):281-90. PubMed ID: 11448520
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ocular vestibular evoked myogenic potentials elicited with vibration applied to the teeth.
    Parker-George JC; Bell SL; Griffin MJ
    Clin Neurophysiol; 2016 Jan; 127(1):833-841. PubMed ID: 25881783
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. I. Linear acceleration responses during off-vertical axis rotation.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1996 Jun; 75(6):2405-24. PubMed ID: 8793753
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A relay for input from group II muscle afferents in sacral segments of the cat spinal cord.
    Jankowska E; Riddell JS
    J Physiol; 1993 Jun; 465():561-80. PubMed ID: 8229850
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Changes in peripheral and central nerve conduction with aging.
    Mackenzie RA; Phillips LH
    Clin Exp Neurol; 1981; 18():109-16. PubMed ID: 6926379
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Age-related changes in peripheral and central sensory conduction times estimated by short latency somatosensory evoked potentials].
    Kohara N; Kuzuhara S; Yamanouchi H; Toyokura Y
    Nihon Ronen Igakkai Zasshi; 1988 Jan; 25(1):24-7. PubMed ID: 3385980
    [No Abstract]   [Full Text] [Related]  

  • 49. Afferent projections from the mammary glands to the spinal cord in the lactating rat--II. Electrophysiological responses of spinal neurons during stimulation of the nipples, including suckling.
    Poulain DA; Wakerley JB
    Neuroscience; 1986 Oct; 19(2):511-21. PubMed ID: 3774152
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sea snakes (Lapemis curtus) are sensitive to low-amplitude water motions.
    Westhoff G; Fry BG; Bleckmann H
    Zoology (Jena); 2005; 108(3):195-200. PubMed ID: 16351967
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The impact of stimulus properties on low- and high-frequency median nerve somatosensory evoked potentials.
    Gobbelé R; Dieckhöfer A; Thyerlei D; Buchner H; Waberski TD
    J Clin Neurophysiol; 2008 Aug; 25(4):194-201. PubMed ID: 18677183
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Neurocardiac and cerebral responses evoked by esophageal vago-afferent stimulation in humans: effect of varying intensities.
    Kamath MV; Hollerbach S; Bajwa A; Fallen EL; Upton AR; Tougas G
    Cardiovasc Res; 1998 Dec; 40(3):591-9. PubMed ID: 10070501
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Properties of somata of spinal dorsal root ganglion cells differ according to peripheral receptor innervated.
    Koerber HR; Druzinsky RE; Mendell LM
    J Neurophysiol; 1988 Nov; 60(5):1584-96. PubMed ID: 3199173
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A model accounting for effects of vibratory amplitude on responses of cutaneous mechanoreceptors in macaque monkey.
    Freeman AW; Johnson KO
    J Physiol; 1982 Feb; 323():43-64. PubMed ID: 7097579
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells.
    Russell IJ; Sellick PM
    J Physiol; 1983 May; 338():179-206. PubMed ID: 6875955
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modulation of the somatosensory evoked potentials by the input information originating from the gastrocnemius and sural nerves in the dog.
    Tan U; Calişkan S
    Int J Neurosci; 1988 Jan; 38(1-2):151-78. PubMed ID: 3356499
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High frequency vibration induced gating of subcortical and cortical median nerve somatosensory evoked potentials: different effects on the cervical N13 and on the P13 and P14 far-field SEP components.
    Buchner H; Höpfner U; Biniek R; Ferbert A
    Electromyogr Clin Neurophysiol; 1992 Jun; 32(6):311-6. PubMed ID: 1623848
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Response characteristics of vibration-sensitive neurons in the midbrain of the grassfrog, Rana temporaria.
    Christensen-Dalsgaard J; Jørgensen MB
    J Comp Physiol A; 1989 Jan; 164(4):495-9. PubMed ID: 2784502
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Frequency-dependent changes in cerebral blood flow and evoked potentials during somatosensory stimulation in the rat.
    Ngai AC; Jolley MA; D'Ambrosio R; Meno JR; Winn HR
    Brain Res; 1999 Aug; 837(1-2):221-8. PubMed ID: 10434006
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synchronization of β and γ oscillations in the somatosensory evoked neuromagnetic steady-state response.
    Ross B; Jamali S; Miyazaki T; Fujioka T
    Exp Neurol; 2013 Jul; 245():40-51. PubMed ID: 22955055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.