These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 20460687)

  • 1. Histological and histomorphometrical analysis of a silica matrix embedded nanocrystalline hydroxyapatite bone substitute using the subcutaneous implantation model in Wistar rats.
    Ghanaati S; Orth C; Barbeck M; Willershausen I; Thimm BW; Booms P; Stübinger S; Landes C; Sader RA; Kirkpatrick CJ
    Biomed Mater; 2010 Jun; 5(3):35005. PubMed ID: 20460687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics.
    Ghanaati S; Barbeck M; Detsch R; Deisinger U; Hilbig U; Rausch V; Sader R; Unger RE; Ziegler G; Kirkpatrick CJ
    Biomed Mater; 2012 Feb; 7(1):015005. PubMed ID: 22287541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implantation of an Injectable Bone Substitute Material Enables Integration Following the Principles of Guided Bone Regeneration.
    Barbeck M; Jung O; Smeets R; Gosau M; Schnettler R; Rider P; Houshmand A; Korzinskas T
    In Vivo; 2020; 34(2):557-568. PubMed ID: 32111754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Addition of blood to a phycogenic bone substitute leads to increased in vivo vascularization.
    Barbeck M; Najman S; Stojanović S; Mitić Ž; Živković JM; Choukroun J; Kovačević P; Sader R; Kirkpatrick CJ; Ghanaati S
    Biomed Mater; 2015 Sep; 10(5):055007. PubMed ID: 26359820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implantation of silicon dioxide-based nanocrystalline hydroxyapatite and pure phase beta-tricalciumphosphate bone substitute granules in caprine muscle tissue does not induce new bone formation.
    Ghanaati S; Udeabor SE; Barbeck M; Willershausen I; Kuenzel O; Sader RA; Kirkpatrick CJ
    Head Face Med; 2013 Jan; 9():1. PubMed ID: 23286366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of injectable silica-embedded nanohydroxyapatite bone substitute in a rat tibia defect model.
    Xu W; Ganz C; Weber U; Adam M; Holzhüter G; Wolter D; Frerich B; Vollmar B; Gerber T
    Int J Nanomedicine; 2011; 6():1543-52. PubMed ID: 21845044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomaterial-induced multinucleated giant cells express proinflammatory signaling molecules: A histological study in humans.
    Zhang Y; Al-Maawi S; Wang X; Sader R; James Kirkpatrick C; Ghanaati S
    J Biomed Mater Res A; 2019 Apr; 107(4):780-790. PubMed ID: 30549210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Investigation of a new highly porous hydroxyapatite matrix for obliterating open mastoid cavities - application in guinea pigs bulla].
    Punke C; Zehlicke T; Boltze C; Pau HW
    Laryngorhinootologie; 2009 Apr; 88(4):241-6. PubMed ID: 19347782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A preliminary study in osteoinduction by a nano-crystalline hydroxyapatite in the mini pig.
    Götz W; Lenz S; Reichert C; Henkel KO; Bienengräber V; Pernicka L; Gundlach KK; Gredes T; Gerber T; Gedrange T; Heinemann F
    Folia Histochem Cytobiol; 2010 Dec; 48(4):589-96. PubMed ID: 21478102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An injectable bone substitute composed of beta-tricalcium phosphate granules, methylcellulose and hyaluronic acid inhibits connective tissue influx into its implantation bed in vivo.
    Ghanaati S; Barbeck M; Hilbig U; Hoffmann C; Unger RE; Sader RA; Peters F; Kirkpatrick CJ
    Acta Biomater; 2011 Nov; 7(11):4018-28. PubMed ID: 21784183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrix change of bone grafting substitute after implantation into guinea pig bulla.
    Punke Ch; Zehlicke T; Just T; Holzhüter G; Gerber T; Pau HW
    Folia Morphol (Warsz); 2012 May; 71(2):109-14. PubMed ID: 22648590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Injectable nanocrystalline hydroxyapatite paste for bone substitution: in vivo analysis of biocompatibility and vascularization.
    Laschke MW; Witt K; Pohlemann T; Menger MD
    J Biomed Mater Res B Appl Biomater; 2007 Aug; 82(2):494-505. PubMed ID: 17279565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of β-tricalcium phosphate granule size and morphology on tissue reaction in vivo.
    Ghanaati S; Barbeck M; Orth C; Willershausen I; Thimm BW; Hoffmann C; Rasic A; Sader RA; Unger RE; Peters F; Kirkpatrick CJ
    Acta Biomater; 2010 Dec; 6(12):4476-87. PubMed ID: 20624495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogel-embedded nanocrystalline hydroxyapatite granules (elastic blocks) based on a cross-linked polyvinylpyrrolidone as bone grafting substitute in a rat tibia model.
    Dau M; Ganz C; Zaage F; Frerich B; Gerber T
    Int J Nanomedicine; 2017; 12():7393-7404. PubMed ID: 29066890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving material properties of a poloxamer P407 hydrogel-based hydroxyapatite bone substitute material by adding silica-A comparative in vivo study.
    Kämmerer PW; Heimes D; Zaage F; Ganz C; Frerich B; Gerber T; Dau M
    J Biomed Mater Res B Appl Biomater; 2024 May; 112(5):e35405. PubMed ID: 38701384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early matrix change of a nanostructured bone grafting substitute in the rat.
    Xu W; Holzhüter G; Sorg H; Wolter D; Lenz S; Gerber T; Vollmar B
    J Biomed Mater Res B Appl Biomater; 2009 Nov; 91(2):692-699. PubMed ID: 19572294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute NanoBone.
    Abshagen K; Schrodi I; Gerber T; Vollmar B
    J Biomed Mater Res A; 2009 Nov; 91(2):557-66. PubMed ID: 18985779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone tissue reaction of nano-hydroxyapatite/collagen composite at the early stage of implantation.
    Fukui N; Sato T; Kuboki Y; Aoki H
    Biomed Mater Eng; 2008; 18(1):25-33. PubMed ID: 18198404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo comparison of a granular and putty form of a sintered and a non-sintered silica-enhanced hydroxyapatite bone substitute material.
    Dau M; Ganz C; Zaage F; Staedt H; Goetze E; Gerber T; Kämmerer PW
    J Biomater Appl; 2020 Jan; 34(6):864-874. PubMed ID: 31544575
    [No Abstract]   [Full Text] [Related]  

  • 20. Non-cross-linked porcine-based collagen I-III membranes do not require high vascularization rates for their integration within the implantation bed: a paradigm shift.
    Ghanaati S
    Acta Biomater; 2012 Aug; 8(8):3061-72. PubMed ID: 22561669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.