These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 20461075)

  • 1. A general lack of compensation for gene dosage in yeast.
    Springer M; Weissman JS; Kirschner MW
    Mol Syst Biol; 2010 May; 6():368. PubMed ID: 20461075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dosage compensation can buffer copy-number variation in wild yeast.
    Hose J; Yong CM; Sardi M; Wang Z; Newton MA; Gasch AP
    Elife; 2015 May; 4():. PubMed ID: 25955966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterozygous screen in Saccharomyces cerevisiae identifies dosage-sensitive genes that affect chromosome stability.
    Strome ED; Wu X; Kimmel M; Plon SE
    Genetics; 2008 Mar; 178(3):1193-207. PubMed ID: 18245329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genomics of wild type yeast strains unveils important genome diversity.
    Carreto L; Eiriz MF; Gomes AC; Pereira PM; Schuller D; Santos MA
    BMC Genomics; 2008 Nov; 9():524. PubMed ID: 18983662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further support for aneuploidy tolerance in wild yeast and effects of dosage compensation on gene copy-number evolution.
    Gasch AP; Hose J; Newton MA; Sardi M; Yong M; Wang Z
    Elife; 2016 Mar; 5():e14409. PubMed ID: 26949252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dosage sensitivity and the evolution of gene families in yeast.
    Papp B; Pál C; Hurst LD
    Nature; 2003 Jul; 424(6945):194-7. PubMed ID: 12853957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures.
    Dunn B; Levine RP; Sherlock G
    BMC Genomics; 2005 Apr; 6():53. PubMed ID: 15833139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The conserved Mec1/Rad53 nuclear checkpoint pathway regulates mitochondrial DNA copy number in Saccharomyces cerevisiae.
    Taylor SD; Zhang H; Eaton JS; Rodeheffer MS; Lebedeva MA; O'rourke TW; Siede W; Shadel GS
    Mol Biol Cell; 2005 Jun; 16(6):3010-8. PubMed ID: 15829566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Copy Yeast Library Construction and High-Copy Rescue Genetic Screen in Saccharomyces cerevisiae.
    Zeng F; Quintana DG
    Methods Mol Biol; 2021; 2196():77-83. PubMed ID: 32889714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genes encoding subunits of stable complexes are clustered on the yeast chromosomes: an interpretation from a dosage balance perspective.
    Teichmann SA; Veitia RA
    Genetics; 2004 Aug; 167(4):2121-5. PubMed ID: 15342545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increase in rRNA content in a Saccharomyces cerevisiae suppressor strain from rrn10 disruptant by rDNA cluster duplication.
    Khatun F; Sasano Y; Sugiyama M; Kaneko Y; Harashima S
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):9011-9. PubMed ID: 23872957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Genomics Using the Saccharomyces cerevisiae Yeast Deletion Collections.
    Nislow C; Wong LH; Lee AH; Giaever G
    Cold Spring Harb Protoc; 2016 Sep; 2016(9):. PubMed ID: 27587784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of dosage-sensitive genes in Saccharomyces cerevisiae using the genetic tug-of-war method.
    Makanae K; Kintaka R; Makino T; Kitano H; Moriya H
    Genome Res; 2013 Feb; 23(2):300-11. PubMed ID: 23275495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three copies of the ATP2 gene are arranged in tandem on chromosome X in the yeast Saccharomyces cerevisiae.
    Takeda M; Katayama H; Satoh T; Mabuchi T
    Curr Genet; 2005 May; 47(5):265-72. PubMed ID: 15776236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. No current evidence for widespread dosage compensation in S. cerevisiae.
    Torres EM; Springer M; Amon A
    Elife; 2016 Mar; 5():e10996. PubMed ID: 26949255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genomics as a time machine: how relative gene dosage and metabolic requirements shaped the time-dependent resolution of yeast polyploidy.
    Conant GC
    Mol Biol Evol; 2014 Dec; 31(12):3184-93. PubMed ID: 25158798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the ATP3 gene of Saccharomyces cerevisiae: presence of two closely linked copies, ATP3a and ATP3b, on the right arm of chromosome II.
    Ohnishi K; Ishibashi S; Kunihiro M; Satoh T; Matsubara K; Oku S; Ono B; Mabuchi T; Takeda M
    Yeast; 2003 Aug; 20(11):943-54. PubMed ID: 12898710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KNR4, a suppressor of Saccharomyces cerevisiae cwh mutants, is involved in the transcriptional control of chitin synthase genes.
    Martin H; Dagkessamanskaia A; Satchanska G; Dallies N; François J
    Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():249-258. PubMed ID: 10206705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of RCN1 and RSA3 as ethanol-tolerant genes in Saccharomyces cerevisiae using a high copy barcoded library.
    Anderson MJ; Barker SL; Boone C; Measday V
    FEMS Yeast Res; 2012 Feb; 12(1):48-60. PubMed ID: 22093065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and genomic characterisation of Saccharomyces cerevisiae hybrids with improved fermentation performance and mannoprotein release capacity.
    Pérez-Través L; Lopes CA; González R; Barrio E; Querol A
    Int J Food Microbiol; 2015 Jul; 205():30-40. PubMed ID: 25879876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.