These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

612 related articles for article (PubMed ID: 20461098)

  • 1. Decoding signalling networks by mass spectrometry-based proteomics.
    Choudhary C; Mann M
    Nat Rev Mol Cell Biol; 2010 Jun; 11(6):427-39. PubMed ID: 20461098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass spectrometry-based signal networks elucidation.
    He K; Wang N; Li WH; Zhang XM
    Curr Opin Biotechnol; 2012 Feb; 23(1):120-5. PubMed ID: 22100035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification, Quantification, and Site Localization of Protein Posttranslational Modifications via Mass Spectrometry-Based Proteomics.
    Ke M; Shen H; Wang L; Luo S; Lin L; Yang J; Tian R
    Adv Exp Med Biol; 2016; 919():345-382. PubMed ID: 27975226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Posttranslational modifications in systems biology.
    Aggarwal S; Tolani P; Gupta S; Yadav AK
    Adv Protein Chem Struct Biol; 2021; 127():93-126. PubMed ID: 34340775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics in Influenza Research: The Emerging Role of Posttranslational Modifications.
    Zhang J; Peng Q; Zhao W; Sun W; Yang J; Liu N
    J Proteome Res; 2021 Jan; 20(1):110-121. PubMed ID: 33348980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted proteomics analyses of phosphorylation-dependent signalling networks.
    Banerjee SL; Dionne U; Lambert JP; Bisson N
    J Proteomics; 2018 Oct; 189():39-47. PubMed ID: 29425736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomics approaches to understand protein phosphorylation in pathway modulation.
    Schulze WX
    Curr Opin Plant Biol; 2010 Jun; 13(3):280-87. PubMed ID: 20097120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of developmental processes: insights from mass spectrometry-based proteomics.
    Veraksa A
    Wiley Interdiscip Rev Dev Biol; 2013; 2(5):723-34. PubMed ID: 24014456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linking the proteins--elucidation of proteome-scale networks using mass spectrometry.
    Pflieger D; Gonnet F; de la Fuente van Bentem S; Hirt H; de la Fuente A
    Mass Spectrom Rev; 2011; 30(2):268-97. PubMed ID: 21337599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysing signalling networks by mass spectrometry.
    Jørgensen C; Locard-Paulet M
    Amino Acids; 2012 Sep; 43(3):1061-74. PubMed ID: 22821269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Next-generation proteomics: towards an integrative view of proteome dynamics.
    Altelaar AF; Munoz J; Heck AJ
    Nat Rev Genet; 2013 Jan; 14(1):35-48. PubMed ID: 23207911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research.
    Manes NP; Nita-Lazar A
    J Proteomics; 2018 Oct; 189():75-90. PubMed ID: 29452276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing citrullination by mass spectrometry-based proteomics.
    Rebak AS; Hendriks IA; Nielsen ML
    Philos Trans R Soc Lond B Biol Sci; 2023 Nov; 378(1890):20220237. PubMed ID: 37778389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification-specific proteomics in plant biology.
    Ytterberg AJ; Jensen ON
    J Proteomics; 2010 Oct; 73(11):2249-66. PubMed ID: 20541636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass-spectrometric exploration of proteome structure and function.
    Aebersold R; Mann M
    Nature; 2016 Sep; 537(7620):347-55. PubMed ID: 27629641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell signalling analyses in the functional genomics era.
    Rogne M; Taskén K
    N Biotechnol; 2013 Mar; 30(3):333-8. PubMed ID: 23369868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity of post-translational modifications and cell signaling revealed by single cell and single organelle mass spectrometry.
    Mun DG; Bhat FA; Joshi N; Sandoval L; Ding H; Jain A; Peterson JA; Kang T; Pujari GP; Tomlinson JL; Budhraja R; Zenka RM; Kannan N; Kipp BR; Dasari S; Gaspar-Maia A; Smoot RL; Kandasamy RK; Pandey A
    Commun Biol; 2024 Jul; 7(1):884. PubMed ID: 39030393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomics beyond trypsin.
    Tsiatsiani L; Heck AJ
    FEBS J; 2015 Jul; 282(14):2612-26. PubMed ID: 25823410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing cell biology through proteomics in space and time (PROSPECTS).
    Lamond AI; Uhlen M; Horning S; Makarov A; Robinson CV; Serrano L; Hartl FU; Baumeister W; Werenskiold AK; Andersen JS; Vorm O; Linial M; Aebersold R; Mann M
    Mol Cell Proteomics; 2012 Mar; 11(3):O112.017731. PubMed ID: 22311636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying Proteome and Protein Modifications in Activated T Cells by Multiplexed Isobaric Labeling Mass Spectrometry.
    Tan H; Blanco DB; Xie B; Li Y; Wu Z; Chi H; Peng J
    Methods Mol Biol; 2021; 2285():297-317. PubMed ID: 33928561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.