These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 20461112)

  • 1. A powerful score test to detect positive selection in genome-wide scans.
    Zhong M; Lange K; Papp JC; Fan R
    Eur J Hum Genet; 2010 Oct; 18(10):1148-59. PubMed ID: 20461112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A practical genome scan for population-specific strong selective sweeps that have reached fixation.
    Kimura R; Fujimoto A; Tokunaga K; Ohashi J
    PLoS One; 2007 Mar; 2(3):e286. PubMed ID: 17356696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cross-population extended haplotype-based homozygosity score test to detect positive selection in genome-wide scans.
    Zhong M; Zhang Y; Lange K; Fan R
    Stat Interface; 2011; 4(1):51-63. PubMed ID: 26097641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identity by descent between distant relatives: detection and applications.
    Browning SR; Browning BL
    Annu Rev Genet; 2012; 46():617-33. PubMed ID: 22994355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable linkage-disequilibrium-based selective sweep detection: a performance guide.
    Alachiotis N; Pavlidis P
    Gigascience; 2016; 5():7. PubMed ID: 26862394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A whole genome long-range haplotype (WGLRH) test for detecting imprints of positive selection in human populations.
    Zhang C; Bailey DK; Awad T; Liu G; Xing G; Cao M; Valmeekam V; Retief J; Matsuzaki H; Taub M; Seielstad M; Kennedy GC
    Bioinformatics; 2006 Sep; 22(17):2122-8. PubMed ID: 16845142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural positive selection and north-south genetic diversity in East Asia.
    Suo C; Xu H; Khor CC; Ong RT; Sim X; Chen J; Tay WT; Sim KS; Zeng YX; Zhang X; Liu J; Tai ES; Wong TY; Chia KS; Teo YY
    Eur J Hum Genet; 2012 Jan; 20(1):102-10. PubMed ID: 21792231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A haplotype sharing method for determining the relative age of SNP alleles.
    de Vries AR; te Meerman GJ
    Hum Hered; 2010; 69(1):52-9. PubMed ID: 19797909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Singapore Genome Variation Project: a haplotype map of three Southeast Asian populations.
    Teo YY; Sim X; Ong RT; Tan AK; Chen J; Tantoso E; Small KS; Ku CS; Lee EJ; Seielstad M; Chia KS
    Genome Res; 2009 Nov; 19(11):2154-62. PubMed ID: 19700652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting positive selection from genome scans of linkage disequilibrium.
    Huff CD; Harpending HC; Rogers AR
    BMC Genomics; 2010 Jan; 11():8. PubMed ID: 20051139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for identifying haplotypes carrying the causative allele in positive natural selection and genome-wide association studies.
    Ong RT; Liu X; Poh WT; Sim X; Chia KS; Teo YY
    Bioinformatics; 2011 Mar; 27(6):822-8. PubMed ID: 21216773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new approach for using genome scans to detect recent positive selection in the human genome.
    Tang K; Thornton KR; Stoneking M
    PLoS Biol; 2007 Jul; 5(7):e171. PubMed ID: 17579516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting selection using extended haplotype homozygosity (EHH)-based statistics in unphased or unpolarized data.
    Klassmann A; Gautier M
    PLoS One; 2022; 17(1):e0262024. PubMed ID: 35041674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linkage disequilibrium and signatures of positive selection around LINE-1 retrotransposons in the human genome.
    Kuhn A; Ong YM; Cheng CY; Wong TY; Quake SR; Burkholder WF
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):8131-6. PubMed ID: 24847061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new inference method for detecting an ongoing selective sweep.
    Fujito NT; Satta Y; Hayakawa T; Takahata N
    Genes Genet Syst; 2018 Nov; 93(4):149-161. PubMed ID: 30270233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting linkage-disequilibrium patterns between cases and controls as a novel association-mapping method.
    Zaykin DV; Meng Z; Ehm MG
    Am J Hum Genet; 2006 May; 78(5):737-746. PubMed ID: 16642430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of regions of positive selection using Shared Genomic Segment analysis.
    Cai Z; Camp NJ; Cannon-Albright L; Thomas A
    Eur J Hum Genet; 2011 Jun; 19(6):667-71. PubMed ID: 21304558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short communication: The combined use of linkage disequilibrium-based haploblocks and allele frequency-based haplotype selection methods enhances genomic evaluation accuracy in dairy cattle.
    Jónás D; Ducrocq V; Croiseau P
    J Dairy Sci; 2017 Apr; 100(4):2905-2908. PubMed ID: 28161173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Similarity in recombination rate and linkage disequilibrium at CYP2C and CYP2D cytochrome P450 gene regions among Europeans indicates signs of selection and no advantage of using tagSNPs in population isolates.
    Pimenoff VN; Laval G; Comas D; Palo JU; Gut I; Cann H; Excoffier L; Sajantila A
    Pharmacogenet Genomics; 2012 Dec; 22(12):846-57. PubMed ID: 23089684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Powerful multi-marker association tests: unifying genomic distance-based regression and logistic regression.
    Han F; Pan W
    Genet Epidemiol; 2010 Nov; 34(7):680-8. PubMed ID: 20976795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.