These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 20461279)

  • 1. Transaminations with isopropyl amine: equilibrium displacement with yeast alcohol dehydrogenase coupled to in situ cofactor regeneration.
    Cassimjee KE; Branneby C; Abedi V; Wells A; Berglund P
    Chem Commun (Camb); 2010 Aug; 46(30):5569-71. PubMed ID: 20461279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model to assess the feasibility of shifting reaction equilibrium by acetone removal in the transamination of ketones using 2-propylamine.
    Tufvesson P; Bach C; Woodley JM
    Biotechnol Bioeng; 2014 Feb; 111(2):309-19. PubMed ID: 23904347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Simple Biosystem for the High-Yielding Cascade Conversion of Racemic Alcohols to Enantiopure Amines.
    Tian K; Li Z
    Angew Chem Int Ed Engl; 2020 Nov; 59(48):21745-21751. PubMed ID: 32776678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral amine synthesis using ω-transaminases: an amine donor that displaces equilibria and enables high-throughput screening.
    Green AP; Turner NJ; O'Reilly E
    Angew Chem Int Ed Engl; 2014 Sep; 53(40):10714-7. PubMed ID: 25138082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic mechanism of yeast alcohol dehydrogenase activity with secondary alcohols and ketones.
    Trivić S; Leskovac V
    Indian J Biochem Biophys; 1994 Oct; 31(5):387-91. PubMed ID: 7851938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereo-Divergent Enzyme Cascades to Convert Racemic 4-Phenyl-2-Butanol into either (S)- or (R)-Corresponding Chiral Amine.
    Romero-Fernandez M; Paradisi F
    Chembiochem; 2022 Apr; 23(8):e202200108. PubMed ID: 35189014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial multi-enzyme networks for the asymmetric amination of sec-alcohols.
    Tauber K; Fuchs M; Sattler JH; Pitzer J; Pressnitz D; Koszelewski D; Faber K; Pfeffer J; Haas T; Kroutil W
    Chemistry; 2013 Mar; 19(12):4030-5. PubMed ID: 23341101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential Two-Step Stereoselective Amination of Allylic Alcohols through the Combination of Laccases and Amine Transaminases.
    Albarrán-Velo J; Lavandera I; Gotor-Fernández V
    Chembiochem; 2020 Jan; 21(1-2):200-211. PubMed ID: 31513330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis.
    Kohls H; Steffen-Munsberg F; Höhne M
    Curr Opin Chem Biol; 2014 Apr; 19():180-92. PubMed ID: 24721252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient single-enzymatic cascade for asymmetric synthesis of chiral amines catalyzed by ω-transaminase.
    Wang B; Land H; Berglund P
    Chem Commun (Camb); 2013 Jan; 49(2):161-3. PubMed ID: 23169388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ω-Transaminase-catalyzed asymmetric synthesis of unnatural amino acids using isopropylamine as an amino donor.
    Park ES; Dong JY; Shin JS
    Org Biomol Chem; 2013 Sep; 11(40):6929-33. PubMed ID: 23897436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox self-sufficient biocatalyst network for the amination of primary alcohols.
    Sattler JH; Fuchs M; Tauber K; Mutti FG; Faber K; Pfeffer J; Haas T; Kroutil W
    Angew Chem Int Ed Engl; 2012 Sep; 51(36):9156-9. PubMed ID: 22887645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric synthesis of chiral amines with omega-transaminase.
    Shin JS; Kim BG
    Biotechnol Bioeng; 1999 Oct; 65(2):206-11. PubMed ID: 10458742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic network for production of ether amines from alcohols.
    Palacio CM; Crismaru CG; Bartsch S; Navickas V; Ditrich K; Breuer M; Abu R; Woodley JM; Baldenius K; Wu B; Janssen DB
    Biotechnol Bioeng; 2016 Sep; 113(9):1853-61. PubMed ID: 26915048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification, expression and characterization of an R-ω-transaminase from Capronia semiimmersa.
    Iglesias C; Panizza P; Rodriguez Giordano S
    Appl Microbiol Biotechnol; 2017 Jul; 101(14):5677-5687. PubMed ID: 28516206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel iminium ion equivalents prepared through C-H oxidation for the stereocontrolled synthesis of functionalized propargylic amine derivatives.
    Fleming JJ; Fiori KW; Du Bois J
    J Am Chem Soc; 2003 Feb; 125(8):2028-9. PubMed ID: 12590513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox self-sufficient whole cell biotransformation for amination of alcohols.
    Klatte S; Wendisch VF
    Bioorg Med Chem; 2014 Oct; 22(20):5578-85. PubMed ID: 24894767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous synthesis of enantiomerically pure (S)-amino acids and (R)-amines using coupled transaminase reactions.
    Cho BK; Cho HJ; Park SH; Yun H; Kim BG
    Biotechnol Bioeng; 2003 Mar; 81(7):783-9. PubMed ID: 12557311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alcohol and aldehyde dehydrogenase from Saccharomyces cerevisiae: specific activity and influence on the production of acetic acid, ethanol and higher alcohols in the first 48 h of fermentation of grape must.
    Millán C; Mauricio JC; Ortega JM
    Microbios; 1990; 64(259):93-101. PubMed ID: 2277591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial synthesis of chiral amines by (R)-specific transamination with Arthrobacter sp. KNK168.
    Iwasaki A; Yamada Y; Kizaki N; Ikenaka Y; Hasegawa J
    Appl Microbiol Biotechnol; 2006 Jan; 69(5):499-505. PubMed ID: 16003558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.