These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 20461390)

  • 1. Evidence for tangential migration disturbances in human lissencephaly resulting from a defect in LIS1, DCX and ARX genes.
    Marcorelles P; Laquerrière A; Adde-Michel C; Marret S; Saugier-Veber P; Beldjord C; Friocourt G
    Acta Neuropathol; 2010 Oct; 120(4):503-15. PubMed ID: 20461390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aristaless-related homeobox gene disruption leads to abnormal distribution of GABAergic interneurons in human neocortex: evidence based on a case of X-linked lissencephaly with abnormal genitalia (XLAG).
    Okazaki S; Ohsawa M; Kuki I; Kawawaki H; Koriyama T; Ri S; Ichiba H; Hai E; Inoue T; Nakamura H; Goto Y; Tomiwa K; Yamano T; Kitamura K; Itoh M
    Acta Neuropathol; 2008 Oct; 116(4):453-62. PubMed ID: 18458920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cajal-Retzius and subplate neurons: their role in cortical development.
    Sarnat HB; Flores-Sarnat L
    Eur J Paediatr Neurol; 2002; 6(2):91-7. PubMed ID: 11995962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interneuron deficits in patients with the Miller-Dieker syndrome.
    Pancoast M; Dobyns W; Golden JA
    Acta Neuropathol; 2005 Apr; 109(4):400-4. PubMed ID: 15739099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Molecular mechanism of lissencephaly--how LIS1 and NDEL1 regulate cytoplasmic dynein?].
    Hirotsune S
    Brain Nerve; 2008 Apr; 60(4):375-81. PubMed ID: 18421979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new paradigm for West syndrome based on molecular and cell biology.
    Kato M
    Epilepsy Res; 2006 Aug; 70 Suppl 1():S87-95. PubMed ID: 16806828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular anatomy, physiology and epileptiform activity in the CA3 region of Dcx knockout mice: a neuronal lamination defect and its consequences.
    Bazelot M; Simonnet J; Dinocourt C; Bruel-Jungerman E; Miles R; Fricker D; Francis F
    Eur J Neurosci; 2012 Jan; 35(2):244-56. PubMed ID: 22250815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lissencephaly and LIS1: insights into the molecular mechanisms of neuronal migration and development.
    Wynshaw-Boris A
    Clin Genet; 2007 Oct; 72(4):296-304. PubMed ID: 17850624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic copy number variations at 17p13.3 and epileptogenesis.
    Shimojima K; Sugiura C; Takahashi H; Ikegami M; Takahashi Y; Ohno K; Matsuo M; Saito K; Yamamoto T
    Epilepsy Res; 2010 May; 89(2-3):303-9. PubMed ID: 20227246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of DCX and LIS1 in migration through the lateral cortical stream of developing forebrain.
    Bai J; Ramos RL; Paramasivam M; Siddiqi F; Ackman JB; LoTurco JJ
    Dev Neurosci; 2008; 30(1-3):144-56. PubMed ID: 18075262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective expression of doublecortin and LIS1 in developing human cortex suggests unique modes of neuronal movement.
    Meyer G; Perez-Garcia CG; Gleeson JG
    Cereb Cortex; 2002 Dec; 12(12):1225-36. PubMed ID: 12427674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-binding proteins in the human developing brain.
    Ulfig N
    Adv Anat Embryol Cell Biol; 2002; 165():III-IX, 1-92. PubMed ID: 12236093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic mechanisms underlying abnormal neuronal migration in classical lissencephaly.
    Kerjan G; Gleeson JG
    Trends Genet; 2007 Dec; 23(12):623-30. PubMed ID: 17997185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Genetic and clinical aspects of lissencephaly].
    Verloes A; Elmaleh M; Gonzales M; Laquerrière A; Gressens P
    Rev Neurol (Paris); 2007 May; 163(5):533-47. PubMed ID: 17571022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel mode of tangential migration of cortical projection neurons.
    Britanova O; Alifragis P; Junek S; Jones K; Gruss P; Tarabykin V
    Dev Biol; 2006 Oct; 298(1):299-311. PubMed ID: 16901480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroanatomical distribution of ARX in brain and its localisation in GABAergic neurons.
    Poirier K; Van Esch H; Friocourt G; Saillour Y; Bahi N; Backer S; Souil E; Castelnau-Ptakhine L; Beldjord C; Francis F; Bienvenu T; Chelly J
    Brain Res Mol Brain Res; 2004 Mar; 122(1):35-46. PubMed ID: 14992814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mouse orthologue of ARX, a gene mutated in several X-linked forms of mental retardation and epilepsy, is a marker of adult neural stem cells and forebrain GABAergic neurons.
    Colombo E; Galli R; Cossu G; Gécz J; Broccoli V
    Dev Dyn; 2004 Nov; 231(3):631-9. PubMed ID: 15376319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing circuits: neurogenesis and migration in the developing neocortex.
    Kriegstein AR
    Epilepsia; 2005; 46 Suppl 7():15-21. PubMed ID: 16201991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic patterns of colocalization of calbindin, parvalbumin and GABA in subpopulations of mouse basolateral amygdalar cells during development.
    Dávila JC; Olmos L; Legaz I; Medina L; Guirado S; Real MA
    J Chem Neuroanat; 2008 Jan; 35(1):67-76. PubMed ID: 17681450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Branching and nucleokinesis defects in migrating interneurons derived from doublecortin knockout mice.
    Kappeler C; Saillour Y; Baudoin JP; Tuy FP; Alvarez C; Houbron C; Gaspar P; Hamard G; Chelly J; Métin C; Francis F
    Hum Mol Genet; 2006 May; 15(9):1387-400. PubMed ID: 16571605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.