These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 20461417)

  • 1. Statistical modelling of grapevine yield in the Port Wine region under present and future climate conditions.
    Santos JA; Malheiro AC; Karremann MK; Pinto JG
    Int J Biometeorol; 2011 Mar; 55(2):119-31. PubMed ID: 20461417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional climate change scenarios applied to viticultural zoning in Mendoza, Argentina.
    Cabré MF; Quénol H; Nuñez M
    Int J Biometeorol; 2016 Sep; 60(9):1325-40. PubMed ID: 26823161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The terroir of Port wine: Two hundred and sixty years of history.
    Prata-Sena M; Castro-Carvalho BM; Nunes S; Amaral B; Silva P
    Food Chem; 2018 Aug; 257():388-398. PubMed ID: 29622227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties.
    Fraga H; Malheiro AC; Moutinho-Pereira J; Santos JA
    Int J Biometeorol; 2013 Nov; 57(6):909-25. PubMed ID: 23306774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential effect of atmospheric warming on grapevine phenology and post-harvest heat accumulation across a range of climates.
    Hall A; Mathews AJ; Holzapfel BP
    Int J Biometeorol; 2016 Sep; 60(9):1405-22. PubMed ID: 26826103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Port wine.
    Moreira N; Guedes de Pinho P
    Adv Food Nutr Res; 2011; 63():119-46. PubMed ID: 21867894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partitioning the grapevine growing season in the Douro Valley of Portugal: accumulated heat better than calendar dates.
    Real AC; Borges J; Cabral JS; Jones GV
    Int J Biometeorol; 2015 Aug; 59(8):1045-59. PubMed ID: 25344018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapidly changing climatic conditions for wine grape growing in the Okanagan Valley region of British Columbia, Canada.
    Rayne S; Forest K
    Sci Total Environ; 2016 Jun; 556():169-78. PubMed ID: 26971218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Climate Warming on Grapevine (
    Bernáth S; Paulen O; Šiška B; Kusá Z; Tóth F
    Plants (Basel); 2021 May; 10(5):. PubMed ID: 34065184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate-induced changes in grapevine yield and must sugar content in Franconia (Germany) between 1805 and 2010.
    Bock A; Sparks TH; Estrella N; Menzel A
    PLoS One; 2013; 8(7):e69015. PubMed ID: 23894395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth performance and carbon partitioning of grapevine Tempranillo clones under simulated climate change scenarios: Elevated CO
    Arrizabalaga-Arriazu M; Morales F; Irigoyen JJ; Hilbert G; Pascual I
    J Plant Physiol; 2020 Sep; 252():153226. PubMed ID: 32763650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature and precipitation projections over Bangladesh and the upstream Ganges, Brahmaputra and Meghna systems.
    Caesar J; Janes T; Lindsay A; Bhaskaran B
    Environ Sci Process Impacts; 2015 Jun; 17(6):1047-56. PubMed ID: 25898009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mediterranean climate patterns and wine quality in North and Central Italy.
    Dalu JD; Baldi M; Marta AD; Orlandini S; Maracchi G; Dalu G; Grifoni D; Mancini M
    Int J Biometeorol; 2013 Sep; 57(5):729-42. PubMed ID: 23152193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe.
    Fraga H; García de Cortázar Atauri I; Malheiro AC; Santos JA
    Glob Chang Biol; 2016 Nov; 22(11):3774-3788. PubMed ID: 27254813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of future nationwide forest transition to discharge in the 21st century with regard to general circulation model climate change scenarios.
    Mouri G; Nakano K; Tsuyama I; Tanaka N
    Environ Res; 2016 Aug; 149():288-296. PubMed ID: 26852164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-model projections of precipitation extremes in Southeast Asia based on CORDEX-Southeast Asia simulations.
    Supari ; Tangang F; Juneng L; Cruz F; Chung JX; Ngai ST; Salimun E; Mohd MSF; Santisirisomboon J; Singhruck P; PhanVan T; Ngo-Duc T; Narisma G; Aldrian E; Gunawan D; Sopaheluwakan A
    Environ Res; 2020 May; 184():109350. PubMed ID: 32179268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changing risk of spring frost damage in grapevines due to climate change? A case study in the Swiss Rhone Valley.
    Meier M; Fuhrer J; Holzkämper A
    Int J Biometeorol; 2018 Jun; 62(6):991-1002. PubMed ID: 29368173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of climate and land use changes on the water quality of a small Mediterranean catchment with intensive viticulture.
    Serpa D; Nunes JP; Keizer JJ; Abrantes N
    Environ Pollut; 2017 May; 224():454-465. PubMed ID: 28238575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate impacts on long-term silage maize yield in Germany.
    Peichl M; Thober S; Samaniego L; Hansjürgens B; Marx A
    Sci Rep; 2019 May; 9(1):7674. PubMed ID: 31113994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of climate information to estimate future mortality from high ambient temperature: A systematic literature review.
    Sanderson M; Arbuthnott K; Kovats S; Hajat S; Falloon P
    PLoS One; 2017; 12(7):e0180369. PubMed ID: 28686743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.