BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 20461517)

  • 1. Expression of microRNA-451 in normal and thalassemic erythropoiesis.
    Svasti S; Masaki S; Penglong T; Abe Y; Winichagoon P; Fucharoen S; Umemura T
    Ann Hematol; 2010 Oct; 89(10):953-8. PubMed ID: 20461517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression patterns of microRNAs 155 and 451 during normal human erythropoiesis.
    Masaki S; Ohtsuka R; Abe Y; Muta K; Umemura T
    Biochem Biophys Res Commun; 2007 Dec; 364(3):509-14. PubMed ID: 17964546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis.
    Choong ML; Yang HH; McNiece I
    Exp Hematol; 2007 Apr; 35(4):551-64. PubMed ID: 17379065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced erythroid cell differentiation in hypoxic condition is in part contributed by miR-210.
    Sarakul O; Vattanaviboon P; Tanaka Y; Fucharoen S; Abe Y; Svasti S; Umemura T
    Blood Cells Mol Dis; 2013 Aug; 51(2):98-103. PubMed ID: 23623309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNAs are involved in erythroid differentiation control.
    Yang GH; Wang F; Yu J; Wang XS; Yuan JY; Zhang JW
    J Cell Biochem; 2009 Jun; 107(3):548-56. PubMed ID: 19350553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Expression analysis of microRNAs in erythropoiesis].
    Masaki S; Ohtsuka R; Abe Y; Umemura T
    Rinsho Byori; 2008 Dec; 56(12):1086-92. PubMed ID: 19175072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Successful correction of the human Cooley's anemia beta-thalassemia major phenotype using a lentiviral vector flanked by the chicken hypersensitive site 4 chromatin insulator.
    Malik P; Arumugam PI; Yee JK; Puthenveetil G
    Ann N Y Acad Sci; 2005; 1054():238-49. PubMed ID: 16339671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exogenous iron increases hemoglobin in beta-thalassemic mice.
    Ginzburg YZ; Rybicki AC; Suzuka SM; Hall CB; Breuer W; Cabantchik ZI; Bouhassira EE; Fabry ME; Nagel RL
    Exp Hematol; 2009 Feb; 37(2):172-83. PubMed ID: 19059700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in vitro study on thalassemic erythroid precursors in liquid culture.
    Khuhapinant A; Bunyaratvej A; Sahaphong S; Pattanapanyasat K; Fucharoen S
    Southeast Asian J Trop Med Public Health; 1997; 28 Suppl 3():82-92. PubMed ID: 9640605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. microRNA expression in erythropoiesis and erythroid disorders.
    Lawrie CH
    Br J Haematol; 2010 Jul; 150(2):144-51. PubMed ID: 19912217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of beta-globin in primary erythroid progenitors of beta-thalassemia patients using an SV40-based gene delivery system.
    Dalyot-Herman N; Rund D; Oppenheim A
    J Hematother Stem Cell Res; 1999 Dec; 8(6):593-9. PubMed ID: 10645766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adeno-associated virus 2-mediated transduction and erythroid lineage-restricted long-term expression of the human beta-globin gene in hematopoietic cells from homozygous beta-thalassemic mice.
    Tan M; Qing K; Zhou S; Yoder MC; Srivastava A
    Mol Ther; 2001 Jun; 3(6):940-6. PubMed ID: 11407908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. siRNA-mediated reduction of alpha-globin results in phenotypic improvements in beta-thalassemic cells.
    Voon HP; Wardan H; Vadolas J
    Haematologica; 2008 Aug; 93(8):1238-42. PubMed ID: 18556409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of rapamycin on accumulation of alpha-, beta- and gamma-globin mRNAs in erythroid precursor cells from beta-thalassaemia patients.
    Fibach E; Bianchi N; Borgatti M; Zuccato C; Finotti A; Lampronti I; Prus E; Mischiati C; Gambari R
    Eur J Haematol; 2006 Nov; 77(5):437-41. PubMed ID: 16939628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversal of aberrant splicing of beta-thalassemia allele by antisense RNA in vitro and in vivo.
    Zeng Y; Gu X; Chen Y; Gong L; Ren Z; Huang S
    Chin Med J (Engl); 1999 Feb; 112(2):107-11. PubMed ID: 11593572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of H-ras in erythroid differentiation of TF1 and human umbilical cord blood CD34 cells.
    Ge Y; Li ZH; Marshall MS; Broxmeyer HE; Lu L
    Blood Cells Mol Dis; 1998 Jun; 24(2):124-36; discussion 137. PubMed ID: 9628849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beta-thalassemia and sickle cell disease in culture of early erythroid precursors: hemoglobin synthesis and ultrastructural study.
    Beuzard Y; Tulliez M; Testa U; Vainchenker W; Dubart A; Tsapis A; Galacteros F; Breton-Gorius J; Rosa J
    Blood Cells; 1981; 7(1):179-200. PubMed ID: 7187747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adult and neonatal patterns of human globin gene expression are recapitulated in liquid cultures.
    Dalyot N; Fibach E; Rachmilewitz EA; Oppenheim A
    Exp Hematol; 1992 Oct; 20(9):1141-5. PubMed ID: 1468546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A genetic strategy for single and combinatorial analysis of miRNA function in mammalian hematopoietic stem cells.
    Papapetrou EP; Korkola JE; Sadelain M
    Stem Cells; 2010 Feb; 28(2):287-96. PubMed ID: 19911427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxyurea responses and fetal hemoglobin induction in beta-thalassemia/HbE patients' peripheral blood erythroid cell culture.
    Watanapokasin R; Sanmund D; Winichagoon P; Muta K; Fucharoen S
    Ann Hematol; 2006 Mar; 85(3):164-9. PubMed ID: 16389564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.