These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 20462199)
1. Two distinct mechanisms of inactivation of the class Ic ribonucleotide reductase from Chlamydia trachomatis by hydroxyurea: implications for the protein gating of intersubunit electron transfer. Jiang W; Xie J; Varano PT; Krebs C; Bollinger JM Biochemistry; 2010 Jun; 49(25):5340-9. PubMed ID: 20462199 [TBL] [Abstract][Full Text] [Related]
2. Branched activation- and catalysis-specific pathways for electron relay to the manganese/iron cofactor in ribonucleotide reductase from Chlamydia trachomatis. Jiang W; Saleh L; Barr EW; Xie J; Gardner MM; Krebs C; Bollinger JM Biochemistry; 2008 Aug; 47(33):8477-84. PubMed ID: 18656954 [TBL] [Abstract][Full Text] [Related]
3. Formation and function of the Manganese(IV)/Iron(III) cofactor in Chlamydia trachomatis ribonucleotide reductase. Jiang W; Yun D; Saleh L; Bollinger JM; Krebs C Biochemistry; 2008 Dec; 47(52):13736-44. PubMed ID: 19061340 [TBL] [Abstract][Full Text] [Related]
4. Rapid and quantitative activation of Chlamydia trachomatis ribonucleotide reductase by hydrogen peroxide. Jiang W; Xie J; Nørgaard H; Bollinger JM; Krebs C Biochemistry; 2008 Apr; 47(15):4477-83. PubMed ID: 18358006 [TBL] [Abstract][Full Text] [Related]
5. Radical-translocation intermediates and hurdling of pathway defects in "super-oxidized" (Mn(IV)/Fe(IV)) Chlamydia trachomatis ribonucleotide reductase. Dassama LM; Jiang W; Varano PT; Pandelia ME; Conner DA; Xie J; Bollinger JM; Krebs C J Am Chem Soc; 2012 Dec; 134(50):20498-506. PubMed ID: 23157728 [TBL] [Abstract][Full Text] [Related]
6. Evidence that the β subunit of Chlamydia trachomatis ribonucleotide reductase is active with the manganese ion of its manganese(IV)/iron(III) cofactor in site 1. Dassama LM; Boal AK; Krebs C; Rosenzweig AC; Bollinger JM J Am Chem Soc; 2012 Feb; 134(5):2520-3. PubMed ID: 22242660 [TBL] [Abstract][Full Text] [Related]
7. Geometric and electronic structure of the Mn(IV)Fe(III) cofactor in class Ic ribonucleotide reductase: correlation to the class Ia binuclear non-heme iron enzyme. Kwak Y; Jiang W; Dassama LM; Park K; Bell CB; Liu LV; Wong SD; Saito M; Kobayashi Y; Kitao S; Seto M; Yoda Y; Alp EE; Zhao J; Bollinger JM; Krebs C; Solomon EI J Am Chem Soc; 2013 Nov; 135(46):17573-84. PubMed ID: 24131208 [TBL] [Abstract][Full Text] [Related]
8. The manganese(IV)/iron(III) cofactor of Chlamydia trachomatis ribonucleotide reductase: structure, assembly, radical initiation, and evolution. Bollinger JM; Jiang W; Green MT; Krebs C Curr Opin Struct Biol; 2008 Dec; 18(6):650-7. PubMed ID: 19046875 [TBL] [Abstract][Full Text] [Related]
10. A manganese(IV)/iron(IV) intermediate in assembly of the manganese(IV)/iron(III) cofactor of Chlamydia trachomatis ribonucleotide reductase. Jiang W; Hoffart LM; Krebs C; Bollinger JM Biochemistry; 2007 Jul; 46(30):8709-16. PubMed ID: 17616152 [TBL] [Abstract][Full Text] [Related]
11. Structural basis for assembly of the Mn(IV)/Fe(III) cofactor in the class Ic ribonucleotide reductase from Chlamydia trachomatis. Dassama LM; Krebs C; Bollinger JM; Rosenzweig AC; Boal AK Biochemistry; 2013 Sep; 52(37):6424-36. PubMed ID: 23924396 [TBL] [Abstract][Full Text] [Related]
12. Direct Measurement of the Radical Translocation Distance in the Class I Ribonucleotide Reductase from Chlamydia trachomatis. Livada J; Martinie RJ; Dassama LM; Krebs C; Bollinger JM; Silakov A J Phys Chem B; 2015 Oct; 119(43):13777-84. PubMed ID: 26087051 [TBL] [Abstract][Full Text] [Related]
13. Evidence for a Di-μ-oxo Diamond Core in the Mn(IV)/Fe(IV) Activation Intermediate of Ribonucleotide Reductase from Chlamydia trachomatis. Martinie RJ; Blaesi EJ; Krebs C; Bollinger JM; Silakov A; Pollock CJ J Am Chem Soc; 2017 Feb; 139(5):1950-1957. PubMed ID: 28075562 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of assembly of the dimanganese-tyrosyl radical cofactor of class Ib ribonucleotide reductase: enzymatic generation of superoxide is required for tyrosine oxidation via a Mn(III)Mn(IV) intermediate. Cotruvo JA; Stich TA; Britt RD; Stubbe J J Am Chem Soc; 2013 Mar; 135(10):4027-39. PubMed ID: 23402532 [TBL] [Abstract][Full Text] [Related]
16. Metal binding and activity of ribonucleotide reductase protein R2 mutants: conditions for formation of the mixed manganese-iron cofactor. Popović-Bijelić A; Voevodskaya N; Domkin V; Thelander L; Gräslund A Biochemistry; 2009 Jul; 48(27):6532-9. PubMed ID: 19492792 [TBL] [Abstract][Full Text] [Related]
17. High catalytic activity achieved with a mixed manganese-iron site in protein R2 of Chlamydia ribonucleotide reductase. Voevodskaya N; Lendzian F; Ehrenberg A; Gräslund A FEBS Lett; 2007 Jul; 581(18):3351-5. PubMed ID: 17601579 [TBL] [Abstract][Full Text] [Related]
18. Structure of the high-valent FeIIIFeIV state in ribonucleotide reductase (RNR) of Chlamydia trachomatis--combined EPR, 57Fe-, 1H-ENDOR and X-ray studies. Voevodskaya N; Galander M; Högbom M; Stenmark P; McClarty G; Gräslund A; Lendzian F Biochim Biophys Acta; 2007 Oct; 1774(10):1254-63. PubMed ID: 17827077 [TBL] [Abstract][Full Text] [Related]
19. Density functional theory study of the manganese-containing ribonucleotide reductase from Chlamydia trachomatis: why manganese is needed in the active complex. Roos K; Siegbahn PE Biochemistry; 2009 Mar; 48(9):1878-87. PubMed ID: 19220003 [TBL] [Abstract][Full Text] [Related]
20. Mechanistic implications for the formation of the diiron cluster in ribonucleotide reductase provided by quantitative EPR spectroscopy. Pierce BS; Elgren TE; Hendrich MP J Am Chem Soc; 2003 Jul; 125(29):8748-59. PubMed ID: 12862469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]