These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 20462221)
1. In vitro evaluation of chemically cross-linked shape-memory acrylate-methacrylate copolymer networks as ocular implants. Song L; Hu W; Zhang H; Wang G; Yang H; Zhu S J Phys Chem B; 2010 Jun; 114(21):7172-8. PubMed ID: 20462221 [TBL] [Abstract][Full Text] [Related]
2. Shape-memory polymer networks from oligo[(epsilon-hydroxycaproate)-co-glycolate]dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. Kelch S; Steuer S; Schmidt AM; Lendlein A Biomacromolecules; 2007 Mar; 8(3):1018-27. PubMed ID: 17305394 [TBL] [Abstract][Full Text] [Related]
3. Tailored (meth)acrylate shape-memory polymer networks for ophthalmic applications. Song L; Hu W; Wang G; Niu G; Zhang H; Cao H; Wang K; Yang H; Zhu S Macromol Biosci; 2010 Oct; 10(10):1194-202. PubMed ID: 20625994 [TBL] [Abstract][Full Text] [Related]
4. Clarification of the blood compatibility mechanism by controlling the water structure at the blood-poly(meth)acrylate interface. Tanaka M; Mochizuki A J Biomater Sci Polym Ed; 2010; 21(14):1849-63. PubMed ID: 20699056 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and Characterization of Co-polymers Based on Methyl Methacrylate and 2-Hexyl Acrylate Containing Naphthopyrans for a Light-Sensitive Contact Lens. Nabais CR; Heron BM; de Sousa HC; Gil MH; Sobral AJ J Biomater Sci Polym Ed; 2011; 22(1-3):139-52. PubMed ID: 20546680 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of acrylate-based block copolymers prepared by atom transfer radical polymerization as matrices for paclitaxel delivery from coronary stents. Richard RE; Schwarz M; Ranade S; Chan AK; Matyjaszewski K; Sumerlin B Biomacromolecules; 2005; 6(6):3410-8. PubMed ID: 16283773 [TBL] [Abstract][Full Text] [Related]
7. Cytotoxicity and thermomechanical behavior of biomedical shape-memory polymer networks post-sterilization. Yakacki CM; Lyons MB; Rech B; Gall K; Shandas R Biomed Mater; 2008 Mar; 3(1):015010. PubMed ID: 18458497 [TBL] [Abstract][Full Text] [Related]
8. Protein adsorption to poly(ether urethane ureas) modified with acrylate and methacrylate polymer and copolymer additives. Brunstedt MR; Ziats NP; Robertson SP; Hiltner A; Anderson JM; Lodoen GA; Payet CR J Biomed Mater Res; 1993 Mar; 27(3):367-77. PubMed ID: 8360206 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and Characterization of Shape Memory (Meth)Acrylate Co-Polymers and their Cytocompatibility In Vitro. Song L; Hu W; Wang G; Zhang H; Niu G; Cao H; Yang H; Zhu S J Biomater Sci Polym Ed; 2011; 22(1-3):1-17. PubMed ID: 20557691 [TBL] [Abstract][Full Text] [Related]
10. Chemoenzymatic synthesis of sugar-containing biocompatible hydrogels: crosslinked poly(beta-methylglucoside acrylate) and poly(beta-methylglucoside methacrylate). Park DW; Haam S; Lee TG; Kim HS; Kim WS J Biomed Mater Res A; 2004 Dec; 71(3):497-507. PubMed ID: 15386484 [TBL] [Abstract][Full Text] [Related]
11. Novel hydrogel membrane based on copoly(hydroxyethyl methacrylate/p-vinylbenzyl-poly(ethylene oxide)) for biomedical applications: properties and drug release characteristics. Arica MY; Bayramoglu G; Arica B; Yalçin E; Ito K; Yagci Y Macromol Biosci; 2005 Oct; 5(10):983-92. PubMed ID: 16208632 [TBL] [Abstract][Full Text] [Related]
12. Water structure and blood compatibility of poly(tetrahydrofurfuryl acrylate). Mochizuki A; Hatakeyama T; Tomono Y; Tanaka M J Biomater Sci Polym Ed; 2009; 20(5-6):591-603. PubMed ID: 19323878 [TBL] [Abstract][Full Text] [Related]
13. Future design of a new keratoprosthesis. Physical and biological analysis of polymeric substrates for epithelial cell growth. Campillo-Fernandez AJ; Pastor S; Abad-Collado M; Bataille L; Gomez-Ribelles JL; Meseguer-Dueñas JM; Monleon-Pradas M; Artola A; Alio JL; Ruiz-Moreno JM Biomacromolecules; 2007 Aug; 8(8):2429-36. PubMed ID: 17595132 [TBL] [Abstract][Full Text] [Related]
14. AB-polymer networks with cooligoester and poly(n-butyl acrylate) segments as a multifunctional matrix for controlled drug release. Wischke C; Neffe AT; Steuer S; Engelhardt E; Lendlein A Macromol Biosci; 2010 Sep; 10(9):1063-72. PubMed ID: 20603884 [TBL] [Abstract][Full Text] [Related]
15. Mechanical properties of polymeric membranes obtained by radiation cast-polymerization of hydroxyalkyl and hydroxypolyethyleneglycol methacrylate monomers. Kumakura M J Biomed Mater Res; 1986 Apr; 20(4):521-31. PubMed ID: 3700445 [TBL] [Abstract][Full Text] [Related]
16. A Facile and General Approach to Recoverable High-Strain Multishape Shape Memory Polymers. Li X; Pan Y; Zheng Z; Ding X Macromol Rapid Commun; 2018 Mar; 39(6):e1700613. PubMed ID: 29292554 [TBL] [Abstract][Full Text] [Related]
17. Surface segregation of poly(2-methoxyethyl acrylate) in a mixture with poly(methyl methacrylate). Hirata T; Matsuno H; Tanaka M; Tanaka K Phys Chem Chem Phys; 2011 Mar; 13(11):4928-34. PubMed ID: 21243167 [TBL] [Abstract][Full Text] [Related]
18. Mechanical properties of hydrophilic copolymers of 2-hydroxyethyl methacrylate with ethyl acrylate, n-butyl acrylate, and dodecyl methacrylate. Kolarík J; Migliaresi C J Biomed Mater Res; 1983 Sep; 17(5):757-67. PubMed ID: 6619175 [TBL] [Abstract][Full Text] [Related]
19. Thermoresponsive semicrystalline poly(ε-caprolactone) networks: exploiting cross-linking with cinnamoyl moieties to design polymers with tunable shape memory. Garle A; Kong S; Ojha U; Budhlall BM ACS Appl Mater Interfaces; 2012 Feb; 4(2):645-57. PubMed ID: 22252722 [TBL] [Abstract][Full Text] [Related]
20. Structure and properties of methacrylate-endcapped caprolactone networks with modulated water uptake for biomedical applications. Ivirico JL; Martínez EC; Sánchez MS; Criado IM; Ribelles JL; Pradas MM J Biomed Mater Res B Appl Biomater; 2007 Oct; 83(1):266-75. PubMed ID: 17405167 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]