These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 20462323)

  • 1. Amplitudes and directions of individual saccades can be adjusted by corollary discharge.
    Joiner WM; Fitzgibbon EJ; Wurtz RH
    J Vis; 2010 Feb; 10(2):22.1-12. PubMed ID: 20462323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Error compensation in random vector double step saccades with and without global adaptation.
    Zerr P; Thakkar KN; Uzunbajakau S; Van der Stigchel S
    Vision Res; 2016 Oct; 127():141-151. PubMed ID: 27543803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independent feedback control of horizontal and vertical amplitude during oblique saccades evoked by electrical stimulation of the superior colliculus.
    Nichols MJ; Sparks DL
    J Neurophysiol; 1996 Dec; 76(6):4080-93. PubMed ID: 8985902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of saccade metrics on the corollary discharge contribution to perceived eye location.
    Bansal S; Jayet Bray LC; Peterson MS; Joiner WM
    J Neurophysiol; 2015 May; 113(9):3312-22. PubMed ID: 25761955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling between horizontal and vertical components of saccadic eye movements during constant amplitude and direction gaze shifts in the rhesus monkey.
    Freedman EG
    J Neurophysiol; 2008 Dec; 100(6):3375-93. PubMed ID: 18945817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refuting the hypothesis that a unilateral human parietal lesion abolishes saccade corollary discharge.
    Rath-Wilson K; Guitton D
    Brain; 2015 Dec; 138(Pt 12):3760-75. PubMed ID: 26412850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity of neurons in monkey superior colliculus during interrupted saccades.
    Munoz DP; Waitzman DM; Wurtz RH
    J Neurophysiol; 1996 Jun; 75(6):2562-80. PubMed ID: 8793764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge.
    Sommer MA; Wurtz RH
    J Neurophysiol; 2004 Mar; 91(3):1403-23. PubMed ID: 14573557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of lesions of the oculomotor vermis on eye movements in primate: saccades.
    Takagi M; Zee DS; Tamargo RJ
    J Neurophysiol; 1998 Oct; 80(4):1911-31. PubMed ID: 9772249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disrupted Saccadic Corollary Discharge in Schizophrenia.
    Thakkar KN; Schall JD; Heckers S; Park S
    J Neurosci; 2015 Jul; 35(27):9935-45. PubMed ID: 26156994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disrupting saccadic updating: visual interference prior to the first saccade elicits spatial errors in the secondary saccade in a double-step task.
    Buonocore A; Melcher D
    Exp Brain Res; 2015 Jun; 233(6):1893-905. PubMed ID: 25832623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor intention activity in the macaque's lateral intraparietal area. I. Dissociation of motor plan from sensory memory.
    Mazzoni P; Bracewell RM; Barash S; Andersen RA
    J Neurophysiol; 1996 Sep; 76(3):1439-56. PubMed ID: 8890265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oculomotor control after hemidecortication: a single hemisphere encodes corollary discharges for bilateral saccades.
    Rath-Wilson K; Guitton D
    Cortex; 2015 Feb; 63():232-49. PubMed ID: 25299582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of saccadic amplitude adaptation on subsequent adaptation of saccades in different directions.
    Kojima Y; Iwamoto Y; Yoshida K
    Neurosci Res; 2005 Dec; 53(4):404-12. PubMed ID: 16203053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saccadic dysmetria in a patient with a right frontoparietal lesion. The importance of corollary discharge for accurate spatial behaviour.
    Duhamel JR; Goldberg ME; Fitzgibbon EJ; Sirigu A; Grafman J
    Brain; 1992 Oct; 115 ( Pt 5)():1387-402. PubMed ID: 1422794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saccades to remembered targets: the effects of smooth pursuit and illusory stimulus motion.
    Zivotofsky AZ; Rottach KG; Averbuch-Heller L; Kori AA; Thomas CW; Dell'Osso LF; Leigh RJ
    J Neurophysiol; 1996 Dec; 76(6):3617-32. PubMed ID: 8985862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of saccadic adaptation on visual localization before and during saccades.
    Georg K; Lappe M
    Exp Brain Res; 2009 Jan; 192(1):9-23. PubMed ID: 18716763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saccade adaptation is unhampered by distractors.
    Madelain L; Harwood MR; Herman JP; Wallman J
    J Vis; 2010 Oct; 10(12):29. PubMed ID: 21047761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity of visuomotor burst neurons in the superior colliculus accompanying express saccades.
    Edelman JA; Keller EL
    J Neurophysiol; 1996 Aug; 76(2):908-26. PubMed ID: 8871208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-individual variability and consistency of saccade adaptation in oblique saccades: Amplitude increase and decrease in the horizontal or vertical saccade component.
    Rahmouni S; Madelain L
    Vision Res; 2019 Jul; 160():82-98. PubMed ID: 31082404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.