These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 20462443)

  • 1. A comparison of approximation techniques for variance-based sensitivity analysis of biochemical reaction systems.
    Zhang HX; Goutsias J
    BMC Bioinformatics; 2010 May; 11():246. PubMed ID: 20462443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing experimental variability in variance-based sensitivity analysis of biochemical reaction systems.
    Zhang HX; Goutsias J
    J Chem Phys; 2011 Mar; 134(11):114105. PubMed ID: 21428605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probabilistic sensitivity analysis of biochemical reaction systems.
    Zhang HX; Dempsey WP; Goutsias J
    J Chem Phys; 2009 Sep; 131(9):094101. PubMed ID: 19739843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamically consistent Bayesian analysis of closed biochemical reaction systems.
    Jenkinson G; Zhong X; Goutsias J
    BMC Bioinformatics; 2010 Nov; 11():547. PubMed ID: 21054868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncertainty propagation for deterministic models of biochemical networks using moment equations and the extended Kalman filter.
    Kurdyaeva T; Milias-Argeitis A
    J R Soc Interface; 2021 Aug; 18(181):20210331. PubMed ID: 34343452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SPSens: a software package for stochastic parameter sensitivity analysis of biochemical reaction networks.
    Sheppard PW; Rathinam M; Khammash M
    Bioinformatics; 2013 Jan; 29(1):140-2. PubMed ID: 23104889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pathwise derivative approach to the computation of parameter sensitivities in discrete stochastic chemical systems.
    Sheppard PW; Rathinam M; Khammash M
    J Chem Phys; 2012 Jan; 136(3):034115. PubMed ID: 22280752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Personalization of models with many model parameters: an efficient sensitivity analysis approach.
    Donders WP; Huberts W; van de Vosse FN; Delhaas T
    Int J Numer Method Biomed Eng; 2015 Oct; 31(10):. PubMed ID: 26017545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time series analysis of fMRI data: Spatial modelling and Bayesian computation.
    Teng M; Johnson TD; Nathoo FS
    Stat Med; 2018 Aug; 37(18):2753-2770. PubMed ID: 29717508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative estimation of sampling uncertainties for mycotoxins in cereal shipments.
    Bourgeois FS; Lyman GJ
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(7):1141-56. PubMed ID: 22651820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology.
    Dhamala J; Arevalo HJ; Sapp J; Horácek BM; Wu KC; Trayanova NA; Wang L
    Med Image Anal; 2018 Aug; 48():43-57. PubMed ID: 29843078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tutorial on uncertainty propagation techniques for predictive microbiology models: A critical analysis of state-of-the-art techniques.
    Akkermans S; Nimmegeers P; Van Impe JF
    Int J Food Microbiol; 2018 Oct; 282():1-8. PubMed ID: 29885972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi-Monte Carlo Methods Applied to Tau-Leaping in Stochastic Biological Systems.
    Beentjes CHL; Baker RE
    Bull Math Biol; 2019 Aug; 81(8):2931-2959. PubMed ID: 29802519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks.
    Rathinam M; Sheppard PW; Khammash M
    J Chem Phys; 2010 Jan; 132(3):034103. PubMed ID: 20095724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lognormal Approximations of Fault Tree Uncertainty Distributions.
    El-Shanawany AB; Ardron KH; Walker SP
    Risk Anal; 2018 Aug; 38(8):1576-1584. PubMed ID: 29377195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of prediction error variances via Monte Carlo sampling methods using different formulations of the prediction error variance.
    Hickey JM; Veerkamp RF; Calus MP; Mulder HA; Thompson R
    Genet Sel Evol; 2009 Feb; 41(1):23. PubMed ID: 19284698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global sensitivity analysis with multifidelity Monte Carlo and polynomial chaos expansion for vascular haemodynamics.
    Schäfer F; Schiavazzi DE; Hellevik LR; Sturdy J
    Int J Numer Method Biomed Eng; 2024 Jun; ():e3836. PubMed ID: 38837871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simulation-approximation approach to sample size planning for high-dimensional classification studies.
    de Valpine P; Bitter HM; Brown MP; Heller J
    Biostatistics; 2009 Jul; 10(3):424-35. PubMed ID: 19234308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abrupt motion tracking via intensively adaptive Markov-chain Monte Carlo sampling.
    Zhou X; Lu Y; Lu J; Zhou J
    IEEE Trans Image Process; 2012 Feb; 21(2):789-801. PubMed ID: 21937350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerating Monte Carlo Bayesian Prediction via Approximating Predictive Uncertainty Over the Simplex.
    Cui Y; Yao W; Li Q; Chan AB; Xue CJ
    IEEE Trans Neural Netw Learn Syst; 2022 Apr; 33(4):1492-1506. PubMed ID: 33361002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.