These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 20462584)

  • 1. Foot forces during typical days on the international space station.
    Cavanagh PR; Genc KO; Gopalakrishnan R; Kuklis MM; Maender CC; Rice AJ
    J Biomech; 2010 Aug; 43(11):2182-8. PubMed ID: 20462584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foot forces during exercise on the International Space Station.
    Genc KO; Gopalakrishnan R; Kuklis MM; Maender CC; Rice AJ; Bowersox KD; Cavanagh PR
    J Biomech; 2010 Nov; 43(15):3020-7. PubMed ID: 20728086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Musculoskeletal adaptation to mechanical forces on Earth and in space.
    Whalen R
    Physiologist; 1993; 36(1 Suppl):S127-30. PubMed ID: 11537418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction in proximal femoral strength due to long-duration spaceflight.
    Keyak JH; Koyama AK; LeBlanc A; Lu Y; Lang TF
    Bone; 2009 Mar; 44(3):449-53. PubMed ID: 19100348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ground reaction forces during treadmill running in microgravity.
    De Witt JK; Ploutz-Snyder LL
    J Biomech; 2014 Jul; 47(10):2339-47. PubMed ID: 24835563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biomechanical perspective on exercise countermeasures for long term spaceflight.
    Cavanagh PR; Davis BL; Miller TA
    Aviat Space Environ Med; 1992 Jun; 63(6):482-5. PubMed ID: 1520217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight.
    Lang T; LeBlanc A; Evans H; Lu Y; Genant H; Yu A
    J Bone Miner Res; 2004 Jun; 19(6):1006-12. PubMed ID: 15125798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of spaceflight-induced bone loss: bone mineral density after long-duration missions as fitted with an exponential function.
    Sibonga JD; Evans HJ; Sung HG; Spector ER; Lang TF; Oganov VS; Bakulin AV; Shackelford LC; LeBlanc AD
    Bone; 2007 Dec; 41(6):973-8. PubMed ID: 17931994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gravity replacement during running in simulated microgravity.
    Genc KO; Mandes VE; Cavanagh PR
    Aviat Space Environ Med; 2006 Nov; 77(11):1117-24. PubMed ID: 17086763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Bone loss and bone metabolism in astronauts during long-duration space flight].
    Ohshima H
    Clin Calcium; 2006 Jan; 16(1):81-5. PubMed ID: 16397355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced daily load stimulus to bone in spaceflight and on earth.
    Genc KO; Humphreys BT; Cavanagh PR
    Aviat Space Environ Med; 2009 Nov; 80(11):919-26. PubMed ID: 19911514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating Bone Loss in ISS Astronauts.
    Sibonga JD; Spector ER; Johnston SL; Tarver WJ
    Aerosp Med Hum Perform; 2015 Dec; 86(12 Suppl):A38-A44. PubMed ID: 26630194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locomotion in simulated zero gravity: ground reaction forces.
    McCrory JL; Derr J; Cavanagh PR
    Aviat Space Environ Med; 2004 Mar; 75(3):203-10. PubMed ID: 15018286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Comparative analysis of cosmonauts skeleton changes after space flights on orbital station Mir and international space station and possibilities of prognosis for interplanetary missions].
    Oganov VS; Bogomolov VV; Bakulin AV; Novikov VE; Kabitskaia OE; Murashko LM; Morgun VV; Kasparskiĭ RR
    Fiziol Cheloveka; 2010; 36(3):39-47. PubMed ID: 20586301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Training with the International Space Station interim resistive exercise device.
    Schneider SM; Amonette WE; Blazine K; Bentley J; Lee SM; Loehr JA; Moore AD; Rapley M; Mulder ER; Smith SM
    Med Sci Sports Exerc; 2003 Nov; 35(11):1935-45. PubMed ID: 14600562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical and biological organ dosimetry analysis for international space station astronauts.
    Cucinotta FA; Kim MH; Willingham V; George KA
    Radiat Res; 2008 Jul; 170(1):127-38. PubMed ID: 18582161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crewmember and mission control personnel interactions during International Space Station missions.
    Kanas NA; Salnitskiy VP; Boyd JE; Gushin VI; Weiss DS; Saylor SA; Kozerenko OP; Marmar CR
    Aviat Space Environ Med; 2007 Jun; 78(6):601-7. PubMed ID: 17571662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct real-time measurement of in vivo forces in the lumbar spine.
    Ledet EH; Tymeson MP; DiRisio DJ; Cohen B; Uhl RL
    Spine J; 2005; 5(1):85-94. PubMed ID: 15653089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation of heart rate and blood pressure to short and long duration space missions.
    Verheyden B; Liu J; Beckers F; Aubert AE
    Respir Physiol Neurobiol; 2009 Oct; 169 Suppl 1():S13-6. PubMed ID: 19833299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Foot-ground reaction force during resistive exercise in parabolic flight.
    Lee SM; Cobb K; Loehr JA; Nguyen D; Schneider SM
    Aviat Space Environ Med; 2004 May; 75(5):405-12. PubMed ID: 15152892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.