These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 20462584)

  • 41. [Cluster analysis applicability to fitness evaluation of cosmonauts on long-term missions of the International space station].
    Egorov AD; Stepantsov VI; Nosovskiĭ AM; Shipov AA
    Aviakosm Ekolog Med; 2009; 43(5):66-7. PubMed ID: 20120921
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Physiological and biomechanical considerations for a human Mars mission.
    Hawkey A
    J Br Interplanet Soc; 2005; 58(3-4):117-30. PubMed ID: 15852539
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight.
    Lang TF; Leblanc AD; Evans HJ; Lu Y
    J Bone Miner Res; 2006 Aug; 21(8):1224-30. PubMed ID: 16869720
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial.
    Fuchs RK; Bauer JJ; Snow CM
    J Bone Miner Res; 2001 Jan; 16(1):148-56. PubMed ID: 11149479
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Space flight/bedrest immobilization and bone. In-flight exercise device to support a health of astronauts].
    Mukai C; Ohshima H
    Clin Calcium; 2012 Dec; 22(12):1887-93. PubMed ID: 23187082
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Heart rate and daily physical activity with long-duration habitation of the International Space Station.
    Fraser KS; Greaves DK; Shoemaker JK; Blaber AP; Hughson RL
    Aviat Space Environ Med; 2012 Jun; 83(6):577-84. PubMed ID: 22764612
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An ambulatory biomechanical data collection system for use in space: design and validation.
    Cavanagh PR; Gopalakrishnan R; Rice AJ; Genc KO; Maender CC; Nystrom PG; Johnson MJ; Kuklis MM; Humphreys BT
    Aviat Space Environ Med; 2009 Oct; 80(10):870-81. PubMed ID: 19817239
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Astronaut-induced disturbances to the microgravity environment of the Mir Space Station.
    Newman DJ; Amir AR; Beck SM
    J Spacecr Rockets; 2001; 38(4):578-83. PubMed ID: 12033220
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sleep deficiency in spaceflight is associated with degraded neurobehavioral functions and elevated stress in astronauts on six-month missions aboard the International Space Station.
    Jones CW; Basner M; Mollicone DJ; Mott CM; Dinges DF
    Sleep; 2022 Mar; 45(3):. PubMed ID: 35023565
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bone loss during long term space flight is prevented by the application of a short term impulsive mechanical stimulus.
    Goodship AE; Cunningham JL; Oganov V; Darling J; Miles AW; Owen GW
    Acta Astronaut; 1998; 43(3-6):65-75. PubMed ID: 11541937
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The First Decade of ISS Exercise: Lessons Learned on Expeditions 1-25.
    Hayes J
    Aerosp Med Hum Perform; 2015 Dec; 86(12 Suppl):A1-A6. PubMed ID: 26630187
    [TBL] [Abstract][Full Text] [Related]  

  • 52. One-Year Mission on ISS Is a Step Towards Interplanetary Missions.
    Fomina EV; Lysova NY; Kukoba TB; Grishin AP; Kornienko MB
    Aerosp Med Hum Perform; 2017 Dec; 88(12):1094-1099. PubMed ID: 29157338
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Effects of Long Duration Spaceflight on Sensorimotor Control and Cognition.
    Tays GD; Hupfeld KE; McGregor HR; Salazar AP; De Dios YE; Beltran NE; Reuter-Lorenz PA; Kofman IS; Wood SJ; Bloomberg JJ; Mulavara AP; Seidler RD
    Front Neural Circuits; 2021; 15():723504. PubMed ID: 34764856
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bone metabolism and renal stone risk during International Space Station missions.
    Smith SM; Heer M; Shackelford LC; Sibonga JD; Spatz J; Pietrzyk RA; Hudson EK; Zwart SR
    Bone; 2015 Dec; 81():712-720. PubMed ID: 26456109
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The transcriptome response of astronaut leukocytes to long missions aboard the International Space Station reveals immune modulation.
    Stratis D; Trudel G; Rocheleau L; Pelchat M; Laneuville O
    Front Immunol; 2023; 14():1171103. PubMed ID: 37426644
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Astronaut-Athlete: Optimizing Human Performance in Space.
    Hackney KJ; Scott JM; Hanson AM; English KL; Downs ME; Ploutz-Snyder LL
    J Strength Cond Res; 2015 Dec; 29(12):3531-45. PubMed ID: 26595138
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The ISS flight of Richard Garriott: a template for medicine and science investigation on future spaceflight participant missions.
    Jennings RT; Garriott OK; Bogomolov VV; Pochuev VI; Morgun VV; Garriott RA
    Aviat Space Environ Med; 2010 Feb; 81(2):133-5. PubMed ID: 20131655
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fracture Risk in Spaceflight and Potential Treatment Options.
    Swaffield TP; Neviaser AS; Lehnhardt K
    Aerosp Med Hum Perform; 2018 Dec; 89(12):1060-1067. PubMed ID: 30487026
    [No Abstract]   [Full Text] [Related]  

  • 59. Herpes Virus Reactivation in Astronauts During Spaceflight and Its Application on Earth.
    Rooney BV; Crucian BE; Pierson DL; Laudenslager ML; Mehta SK
    Front Microbiol; 2019; 10():16. PubMed ID: 30792698
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The development of lighting countermeasures for sleep disruption and circadian misalignment during spaceflight.
    Brainard GC; Barger LK; Soler RR; Hanifin JP
    Curr Opin Pulm Med; 2016 Nov; 22(6):535-44. PubMed ID: 27607152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.