These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 20462776)
1. Chemical-shift referencing and resolution stability in methanol:water gradient LC-NMR. Keifer PA J Magn Reson; 2010 Jul; 205(1):130-40. PubMed ID: 20462776 [TBL] [Abstract][Full Text] [Related]
2. Chemical-shift referencing and resolution stability in gradient LC-NMR (acetonitrile:water). Keifer PA J Magn Reson; 2009 Jul; 199(1):75-87. PubMed ID: 19423372 [TBL] [Abstract][Full Text] [Related]
3. Optimization of diffusion-filtered NMR experiments for selective suppression of residual nondeuterated solvent and water signals from 1H NMR spectra of organic compounds. Esturau N; Espinosa JF J Org Chem; 2006 May; 71(11):4103-10. PubMed ID: 16709049 [TBL] [Abstract][Full Text] [Related]
4. Ab initio and NMR studies on the effect of hydration on the chemical shift of hydroxy protons in carbohydrates using disaccharides and water/methanol/ethers as model systems. Bekiroglu S; Sandström A; Kenne L; Sandström C Org Biomol Chem; 2004 Jan; 2(2):200-5. PubMed ID: 14737643 [TBL] [Abstract][Full Text] [Related]
5. High-performance liquid chromatography with nuclear magnetic resonance detection applied to organosilicon polymers. Part 2. Comparison with other methods. Blechta V; Kurfürst M; Sýkora J; Schraml J J Chromatogr A; 2007 Mar; 1145(1-2):175-82. PubMed ID: 17280681 [TBL] [Abstract][Full Text] [Related]
6. Assessment of compatibility between extraction methods for NMR- and LC/MS-based metabolomics. Beltran A; Suarez M; Rodríguez MA; Vinaixa M; Samino S; Arola L; Correig X; Yanes O Anal Chem; 2012 Jul; 84(14):5838-44. PubMed ID: 22697410 [TBL] [Abstract][Full Text] [Related]
7. The interaction of water molecules with purple membrane suspension using 2H double-quantum filter, 1H and 2H diffusion nuclear magnetic resonance. Frish L; Friedman N; Sheves M; Cohen Y Biopolymers; 2004 Sep; 75(1):46-59. PubMed ID: 15307197 [TBL] [Abstract][Full Text] [Related]
8. Multiparametric optimization of (31)P NMR spectroscopic analysis of phospholipids in crude tissue extracts. 1. Chemical shift and signal separation. Lutz NW; Cozzone PJ Anal Chem; 2010 Jul; 82(13):5433-40. PubMed ID: 20443549 [TBL] [Abstract][Full Text] [Related]
9. Organic solvent systems for 31P nuclear magnetic resonance analysis of lecithin phospholipids: applications to two-dimensional gradient-enhanced 1H-detected heteronuclear multiple quantum coherence experiments. Bosco M; Culeddu N; Toffanin R; Pollesello P Anal Biochem; 1997 Feb; 245(1):38-47. PubMed ID: 9025966 [TBL] [Abstract][Full Text] [Related]
10. Whole-molecule calculation of log p based on molar volume, hydrogen bonds, and simulated 13C NMR spectra. Schnackenberg LK; Beger RD J Chem Inf Model; 2005; 45(2):360-5. PubMed ID: 15807500 [TBL] [Abstract][Full Text] [Related]
11. Complete basis set B3LYP NMR calculations of CDCl3 solvent's water fine spectral details. Kupka T Magn Reson Chem; 2008 Sep; 46(9):851-8. PubMed ID: 18613258 [TBL] [Abstract][Full Text] [Related]
12. Molecular dynamics simulations of protein unfolding and limited refolding: characterization of partially unfolded states of ubiquitin in 60% methanol and in water. Alonso DO; Daggett V J Mol Biol; 1995 Mar; 247(3):501-20. PubMed ID: 7714903 [TBL] [Abstract][Full Text] [Related]
14. A solvent system for the high-resolution proton nuclear magnetic resonance spectroscopy of membrane lipids. Wang Y; Hollingsworth RI Anal Biochem; 1995 Mar; 225(2):242-51. PubMed ID: 7762786 [TBL] [Abstract][Full Text] [Related]
15. SOGGY: solvent-optimized double gradient spectroscopy for water suppression. A comparison with some existing techniques. Nguyen BD; Meng X; Donovan KJ; Shaka AJ J Magn Reson; 2007 Feb; 184(2):263-74. PubMed ID: 17126049 [TBL] [Abstract][Full Text] [Related]
16. Influence of pressure and temperature on the physico-chemical properties of mobile phase mixtures commonly used in high-performance liquid chromatography. Billen J; Broeckhoven K; Liekens A; Choikhet K; Rozing G; Desmet G J Chromatogr A; 2008 Nov; 1210(1):30-44. PubMed ID: 18834987 [TBL] [Abstract][Full Text] [Related]
17. Clustering dynamics in water/methanol mixtures: a nuclear magnetic resonance study at 205 kCorsaro C; Spooren J; Branca C; Leone N; Broccio M; Kim C; Chen SH; Stanley HE; Mallamace F J Phys Chem B; 2008 Aug; 112(34):10449-54. PubMed ID: 18672927 [TBL] [Abstract][Full Text] [Related]
18. Standardization of chemical shifts of TMS and solvent signals in NMR solvents. Hoffman RE Magn Reson Chem; 2006 Jun; 44(6):606-16. PubMed ID: 16534833 [TBL] [Abstract][Full Text] [Related]
19. Aluminium complexes in methanol-water mixture as studied by 27Al NMR nuclear magnetic resonance. Samadi-Maybodi A Spectrochim Acta A Mol Biomol Spectrosc; 2006 Jul; 64(4):1025-31. PubMed ID: 16455290 [TBL] [Abstract][Full Text] [Related]
20. Influence of temperature on 31P NMR chemical shifts of phospholipids and their metabolites I. In chloroform-methanol-water. Estrada R; Stolowich N; Yappert MC Anal Biochem; 2008 Sep; 380(1):41-50. PubMed ID: 18534182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]