These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2046328)

  • 21. Atractyloside nephrotoxicity: in vitro studies with suspensions of rat renal fragments and precision-cut cortical slices.
    Obatomi DK; Bach PH
    In Vitr Mol Toxicol; 2000; 13(1):25-36. PubMed ID: 10900405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Renal mouse proximal tubular cells are more susceptible than MDCK cells to chemical anoxia.
    Sheridan AM; Schwartz JH; Kroshian VM; Tercyak AM; Laraia J; Masino S; Lieberthal W
    Am J Physiol; 1993 Sep; 265(3 Pt 2):F342-50. PubMed ID: 8214092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hyperthermia: effects on renal ischemic/reperfusion injury in the rat.
    Zager RA
    Lab Invest; 1990 Sep; 63(3):360-9. PubMed ID: 2395331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phospholipase A2-induced cytoprotection of proximal tubules: potential determinants and specificity for ATP depletion-mediated injury.
    Zager RA; Burkhart KM; Conrad DS; Gmur DJ; Iwata M
    J Am Soc Nephrol; 1996 Jan; 7(1):64-72. PubMed ID: 8808111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxygen deprivation-induced injury to isolated rabbit kidney tubules.
    Weinberg JM
    J Clin Invest; 1985 Sep; 76(3):1193-208. PubMed ID: 4044830
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low molecular weight proteinuria exacerbates experimental ischemic renal injury.
    Zager RA; Teubner EJ; Adler S
    Lab Invest; 1987 Feb; 56(2):180-8. PubMed ID: 3807317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Primary mouse renal tubular epithelial cells have variable injury tolerance to ischemic and chemical mediators of oxidative stress.
    Breggia AC; Himmelfarb J
    Oxid Med Cell Longev; 2008; 1(1):33-8. PubMed ID: 19794906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spectrum and subcellular determinants of fluorinated anesthetic-mediated proximal tubular injury.
    Lochhead KM; Kharasch ED; Zager RA
    Am J Pathol; 1997 Jun; 150(6):2209-21. PubMed ID: 9176410
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of quercetin on hypoxic injury in freshly isolated rat proximal tubules.
    Pietruck F; Kuhlmann MK; Lange B; Feldkamp T; Herget-Rosenthal S; Rauen U; Burkhardt G; Kohler H; Philipp T; Kribben A
    J Lab Clin Med; 2003 Aug; 142(2):106-12. PubMed ID: 12960957
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Myoglobin depletes renal adenine nucleotide pools in the presence and absence of shock.
    Zager RA
    Kidney Int; 1991 Jan; 39(1):111-9. PubMed ID: 2002625
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Susceptibility of human proximal tubular cells to hypoxia: effect of hypoxic preconditioning and comparison to glomerular cells.
    Turman MA; Bates CM
    Ren Fail; 1997 Jan; 19(1):47-60. PubMed ID: 9044451
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 31P nuclear magnetic resonance study of steady-state adenosine 5'-triphosphate levels during graded hypoxia in the isolated perfused rat kidney.
    Ratcliffe PJ; Endre ZH; Scheinman SJ; Tange JD; Ledingham JG; Radda GK
    Clin Sci (Lond); 1988 Apr; 74(4):437-48. PubMed ID: 3356115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intracellular myoglobin loading worsens H2O2-induced, but not hypoxia/reoxygenation-induced, in vitro proximal tubular injury.
    Zager RA
    Circ Res; 1993 Nov; 73(5):926-34. PubMed ID: 8403262
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increased proximal tubular cholesterol content: implications for cell injury and "acquired cytoresistance".
    Zager RA; Burkhart KM; Johnson AC; Sacks BM
    Kidney Int; 1999 Nov; 56(5):1788-97. PubMed ID: 10571787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of extracellular acidosis on 45Ca uptake in isolated hypoxic proximal tubules.
    Burnier M; Van Putten VJ; Schieppati A; Schrier RW
    Am J Physiol; 1988 Jun; 254(6 Pt 1):C839-46. PubMed ID: 3377071
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accelerated cellular recovery after an ischemic renal injury.
    Gaudio KM; Ardito TA; Reilly HF; Kashgarian M; Siegel NJ
    Am J Pathol; 1983 Sep; 112(3):338-46. PubMed ID: 6604459
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Propionyl-L-carnitine prevents renal function deterioration due to ischemia/reperfusion.
    Mister M; Noris M; Szymczuk J; Azzollini N; Aiello S; Abbate M; Trochimowicz L; Gagliardini E; Arduini A; Perico N; Remuzzi G
    Kidney Int; 2002 Mar; 61(3):1064-78. PubMed ID: 11849462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of immediate blood flow enhancement on the postischemic kidney: functional, morphologic, and biochemical assessments.
    Zager RA; Timmerman TP; Merola AJ
    J Lab Clin Med; 1985 Oct; 106(4):360-8. PubMed ID: 4045294
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Brief intermittent reperfusion during renal ischemia: effects on adenine nucleotides, oxidant stress, and the severity of renal failure.
    Thornton MA; Zager RA
    J Lab Clin Med; 1990 May; 115(5):564-71. PubMed ID: 2341758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accumulation of nonesterified fatty acids causes the sustained energetic deficit in kidney proximal tubules after hypoxia-reoxygenation.
    Feldkamp T; Kribben A; Roeser NF; Senter RA; Weinberg JM
    Am J Physiol Renal Physiol; 2006 Feb; 290(2):F465-77. PubMed ID: 16159894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.