BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 20463377)

  • 41. Impact of compressed breast thickness and dose on lesion detectability in digital mammography: FROC study with simulated lesions in real mammograms.
    Salvagnini E; Bosmans H; Van Ongeval C; Van Steen A; Michielsen K; Cockmartin L; Struelens L; Marshall NW
    Med Phys; 2016 Sep; 43(9):5104. PubMed ID: 27587041
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simulation study of a quasi-monochromatic beam for x-ray computed mammotomography.
    McKinley RL; Tornai MP; Samei E; Bradshaw ML
    Med Phys; 2004 Apr; 31(4):800-13. PubMed ID: 15124997
    [TBL] [Abstract][Full Text] [Related]  

  • 43. X-ray spectroscopy applied to radiation shielding calculation in mammography.
    Künzel R; Levenhagen RS; Herdade SB; Terini RA; Costa PR
    Med Phys; 2008 Aug; 35(8):3539-45. PubMed ID: 18777914
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimization of a dual-energy contrast-enhanced technique for a photon-counting digital breast tomosynthesis system: I. A theoretical model.
    Carton AK; Ullberg C; Lindman K; Acciavatti R; Francke T; Maidment AD
    Med Phys; 2010 Nov; 37(11):5896-907. PubMed ID: 21158302
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A 1st generation scatter CT algorithm for electron density breast imaging which accounts for bound incoherent, coherent and multiple scatter: A Monte Carlo study.
    Alpuche Aviles JE; Pistorius S; Elbakri IA; Gordon R; Ahmad B
    J Xray Sci Technol; 2011; 19(4):477-99. PubMed ID: 25214381
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Patient dose in digital mammography.
    Chevalier M; Morán P; Ten JI; Fernández Soto JM; Cepeda T; Vañó E
    Med Phys; 2004 Sep; 31(9):2471-9. PubMed ID: 15487727
    [TBL] [Abstract][Full Text] [Related]  

  • 47. X-ray spectrum optimization of full-field digital mammography: simulation and phantom study.
    Bernhardt P; Mertelmeier T; Hoheisel M
    Med Phys; 2006 Nov; 33(11):4337-49. PubMed ID: 17153413
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A technique optimization protocol and the potential for dose reduction in digital mammography.
    Ranger NT; Lo JY; Samei E
    Med Phys; 2010 Mar; 37(3):962-9. PubMed ID: 20384232
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of the BreastSimulator software platform for breast tomography.
    Mettivier G; Bliznakova K; Sechopoulos I; Boone JM; Di Lillo F; Sarno A; Castriconi R; Russo P
    Phys Med Biol; 2017 Jul; 62(16):6446-6466. PubMed ID: 28398906
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calculation of the properties of digital mammograms using a computer simulation.
    Hunt RA; Dance DR; Bakic PR; Maidment AD; Sandborg M; Ullman G; Alm Carlsson G
    Radiat Prot Dosimetry; 2005; 114(1-3):395-8. PubMed ID: 15933144
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A model of primary and scattered photon fluence for mammographic x-ray image quantification.
    Tromans CE; Cocker MR; Brady SM
    Phys Med Biol; 2012 Oct; 57(20):6541-70. PubMed ID: 23010667
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An analysis of the mechanical parameters used for finite element compression of a high-resolution 3D breast phantom.
    Hsu CM; Palmeri ML; Segars WP; Veress AI; Dobbins JT
    Med Phys; 2011 Oct; 38(10):5756-70. PubMed ID: 21992390
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Finite-element modeling of compression and gravity on a population of breast phantoms for multimodality imaging simulation.
    Sturgeon GM; Kiarashi N; Lo JY; Samei E; Segars WP
    Med Phys; 2016 May; 43(5):2207. PubMed ID: 27147333
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anisotropic imaging performance in breast tomosynthesis.
    Badano A; Kyprianou IS; Jennings RJ; Sempau J
    Med Phys; 2007 Nov; 34(11):4076-91. PubMed ID: 18074617
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reproducibility of automated volumetric breast density assessment in short-term digital mammography reimaging.
    Ko ES; Kim RB; Han BK
    Clin Imaging; 2015; 39(4):582-6. PubMed ID: 25754139
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimal beam quality selection based on contrast-to-noise ratio and mean glandular dose in digital mammography.
    Aminah M; Ng KH; Abdullah BJ; Jamal N
    Australas Phys Eng Sci Med; 2010 Dec; 33(4):329-34. PubMed ID: 20938762
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Volumetric breast density estimation from full-field digital mammograms.
    van Engeland S; Snoeren PR; Huisman H; Boetes C; Karssemeijer N
    IEEE Trans Med Imaging; 2006 Mar; 25(3):273-82. PubMed ID: 16524084
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An unsupervised automatic segmentation algorithm for breast tissue classification of dedicated breast computed tomography images.
    Caballo M; Boone JM; Mann R; Sechopoulos I
    Med Phys; 2018 Jun; 45(6):2542-2559. PubMed ID: 29676025
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Volumetric breast composition analysis: reproducibility of breast percent density and fibroglandular tissue volume measurements in serial mammograms.
    Engelken F; Singh JM; Fallenberg EM; Bick U; Böttcher J; Renz DM
    Acta Radiol; 2014 Feb; 55(1):32-8. PubMed ID: 23878356
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Using aluminum for scatter control in mammography: preliminary work using measurements of CNR and FOM.
    Al Khalifah K; Davidson R; Zhou A
    Radiol Phys Technol; 2020 Mar; 13(1):37-44. PubMed ID: 31749130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.