These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 20463732)

  • 1. A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes.
    García-Berro E; Torres S; Althaus LG; Renedo I; Lorén-Aguilar P; Córsico AH; Rohrmann RD; Salaris M; Isern J
    Nature; 2010 May; 465(7295):194-6. PubMed ID: 20463732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the faintest stars in a globular star cluster.
    Richer HB; Anderson J; Brewer J; Davis S; Fahlman GG; Hansen BM; Hurley J; Kalirai JS; King IR; Reitzel D; Rich RM; Shara MM; Stetson PB
    Science; 2006 Aug; 313(5789):936-40. PubMed ID: 16917054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. White dwarf stars with carbon atmospheres.
    Dufour P; Liebert J; Fontaine G; Behara N
    Nature; 2007 Nov; 450(7169):522-4. PubMed ID: 18033290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared spectrum of an extremely cool white-dwarf star.
    Hodgkin ST; Oppenheimer BR; Hambly NC; Jameson RF; Smartt SJ; Steele IA
    Nature; 2000 Jan; 403(6765):57-9. PubMed ID: 10638748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Temperature and Cooling Age of the White Dwarf Companion to the Millisecond Pulsar PSR B1855+09.
    van Kerkwijk MH ; Bell JF; Kaspi VM; Kulkarni SR
    Astrophys J; 2000 Feb; 530(1):L37-L40. PubMed ID: 10642200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core crystallization and pile-up in the cooling sequence of evolving white dwarfs.
    Tremblay PE; Fontaine G; Fusillo NPG; Dunlap BH; Gänsicke BT; Hollands MA; Hermes JJ; Marsh TR; Cukanovaite E; Cunningham T
    Nature; 2019 Jan; 565(7738):202-205. PubMed ID: 30626942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of the progenitor of the type Ia supernova 2007on.
    Voss R; Nelemans G
    Nature; 2008 Feb; 451(7180):802-4. PubMed ID: 18273013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of cooling by strong magnetic fields in white dwarf stars.
    Valyavin G; Shulyak D; Wade GA; Antonyuk K; Zharikov SV; Galazutdinov GA; Plachinda S; Bagnulo S; Machado LF; Alvarez M; Clark DM; Lopez JM; Hiriart D; Han I; Jeon YB; Zurita C; Mujica R; Burlakova T; Szeifert T; Burenkov A
    Nature; 2014 Nov; 515(7525):88-91. PubMed ID: 25327247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate.
    Gilfanov M; Bogdán A
    Nature; 2010 Feb; 463(7283):924-5. PubMed ID: 20164924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution x-ray imaging of a globular cluster core: compact binaries in 47Tuc.
    Grindlay JE; Heinke C; Edmonds PD; Murray SS
    Science; 2001 Jun; 292(5525):2290-5. PubMed ID: 11358997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A binary star fraction of 76 per cent and unusual orbit parameters for the blue stragglers of NGC 188.
    Mathieu RD; Geller AM
    Nature; 2009 Dec; 462(7276):1032-5. PubMed ID: 20033042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using self-organizing maps to identify potential halo white dwarfs.
    García-Berro E; Torres S; Isern J
    Neural Netw; 2003; 16(3-4):405-10. PubMed ID: 12672435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variability in the Massive Open Cluster NGC 1817 from
    Sandquist EL; Stello D; Arentoft T; Brogaard K; Grundahl F; Vanderburg A; Hedlund A; DeWitt R; Ackerman TR; Aguilar M; Buckner AJ; Juarez C; Ortiz AJ; Richarte D; Rivera DI; Schlapfer L
    Astron J; 2020 Mar; 159(3):. PubMed ID: 32095021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Sublimation Delays the Onset of Dusty Debris Disk Formation Around White Dwarf Stars.
    Steckloff JK; Debes J; Steele A; Johnson B; Adams ER; Jacobson SA; Springmann A
    Astrophys J Lett; 2021 Jun; 913(2):. PubMed ID: 35003618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The spectral evolution of white dwarfs: where do we stand?
    Bédard A
    Astrophys Space Sci; 2024; 369(4):43. PubMed ID: 38681903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A large oxygen-dominated core from the seismic cartography of a pulsating white dwarf.
    Giammichele N; Charpinet S; Fontaine G; Brassard P; Green EM; Van Grootel V; Bergeron P; Zong W; Dupret MA
    Nature; 2018 Feb; 554(7690):73-76. PubMed ID: 29310123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of radio emission from the brown dwarf LP944-20.
    Berger E; Ball S; Becker KM; Clarke M; Frail DA; Fukuda TA; Hoffman IM; Mellon R; Momjian E; Murphy NW; Teng SH; Woodruff T; Zauderer BA; Zavala RT
    Nature; 2001 Mar; 410(6826):338-40. PubMed ID: 11268202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A white dwarf with an oxygen atmosphere.
    Kepler SO; Koester D; Ourique G
    Science; 2016 Apr; 352(6281):67-9. PubMed ID: 27034367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survival of a brown dwarf after engulfment by a red giant star.
    Maxted PF; Napiwotzki R; Dobbie PD; Burleigh MR
    Nature; 2006 Aug; 442(7102):543-5. PubMed ID: 16885979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of two young brown dwarfs in an eclipsing binary system.
    Stassun KG; Mathieu RD; Valenti JA
    Nature; 2006 Mar; 440(7082):311-4. PubMed ID: 16541067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.