These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 20463733)

  • 1. Time-resolved observation of coherent multi-body interactions in quantum phase revivals.
    Will S; Best T; Schneider U; Hackermüller L; Lühmann DS; Bloch I
    Nature; 2010 May; 465(7295):197-201. PubMed ID: 20463733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of multi-body interactions in a fermionic lattice clock.
    Goban A; Hutson RB; Marti GE; Campbell SL; Perlin MA; Julienne PS; D'Incao JP; Rey AM; Ye J
    Nature; 2018 Nov; 563(7731):369-373. PubMed ID: 30429544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unitary p-wave interactions between fermions in an optical lattice.
    Venu V; Xu P; Mamaev M; Corapi F; Bilitewski T; D'Incao JP; Fujiwara CJ; Rey AM; Thywissen JH
    Nature; 2023 Jan; 613(7943):262-267. PubMed ID: 36631646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum phases from competing short- and long-range interactions in an optical lattice.
    Landig R; Hruby L; Dogra N; Landini M; Mottl R; Donner T; Esslinger T
    Nature; 2016 Apr; 532(7600):476-9. PubMed ID: 27064902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atom-chip-based generation of entanglement for quantum metrology.
    Riedel MF; Böhi P; Li Y; Hänsch TW; Sinatra A; Treutlein P
    Nature; 2010 Apr; 464(7292):1170-3. PubMed ID: 20357765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of coherent quench dynamics in a metallic many-body state of fermionic atoms.
    Will S; Iyer D; Rigol M
    Nat Commun; 2015 Jan; 6():6009. PubMed ID: 25625799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Higher-Order Topological Peierls Insulator in a Two-Dimensional Atom-Cavity System.
    Fraxanet J; Dauphin A; Lewenstein M; Barbiero L; González-Cuadra D
    Phys Rev Lett; 2023 Dec; 131(26):263001. PubMed ID: 38215379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms.
    Greiner M; Mandel O; Esslinger T; Hänsch TW; Bloch I
    Nature; 2002 Jan; 415(6867):39-44. PubMed ID: 11780110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum simulation of quantum many-body systems with ultracold two-electron atoms in an optical lattice.
    Takahashi Y
    Proc Jpn Acad Ser B Phys Biol Sci; 2022; 98(4):141-160. PubMed ID: 35400693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial quantum noise interferometry in expanding ultracold atom clouds.
    Fölling S; Gerbier F; Widera A; Mandel O; Gericke T; Bloch I
    Nature; 2005 Mar; 434(7032):481-4. PubMed ID: 15791249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A gated quantum dot strongly coupled to an optical microcavity.
    Najer D; Söllner I; Sekatski P; Dolique V; Löbl MC; Riedel D; Schott R; Starosielec S; Valentin SR; Wieck AD; Sangouard N; Ludwig A; Warburton RJ
    Nature; 2019 Nov; 575(7784):622-627. PubMed ID: 31634901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dipolar quantum solids emerging in a Hubbard quantum simulator.
    Su L; Douglas A; Szurek M; Groth R; Ozturk SF; Krahn A; Hébert AH; Phelps GA; Ebadi S; Dickerson S; Ferlaino F; Marković O; Greiner M
    Nature; 2023 Oct; 622(7984):724-729. PubMed ID: 37880438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orbital excitation blockade and algorithmic cooling in quantum gases.
    Bakr WS; Preiss PM; Tai ME; Ma R; Simon J; Greiner M
    Nature; 2011 Dec; 480(7378):500-3. PubMed ID: 22193104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of gauge invariance in a 71-site Bose-Hubbard quantum simulator.
    Yang B; Sun H; Ott R; Wang HY; Zache TV; Halimeh JC; Yuan ZS; Hauke P; Pan JW
    Nature; 2020 Nov; 587(7834):392-396. PubMed ID: 33208959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices.
    Zohar E; Cirac JI; Reznik B
    Rep Prog Phys; 2016 Jan; 79(1):014401. PubMed ID: 26684222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling a single trapped atom to a nanoscale optical cavity.
    Thompson JD; Tiecke TG; de Leon NP; Feist J; Akimov AV; Gullans M; Zibrov AS; Vuletić V; Lukin MD
    Science; 2013 Jun; 340(6137):1202-5. PubMed ID: 23618764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous emission of matter waves from a tunable open quantum system.
    Krinner L; Stewart M; Pazmiño A; Kwon J; Schneble D
    Nature; 2018 Jul; 559(7715):589-592. PubMed ID: 30046077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice.
    Bakr WS; Gillen JI; Peng A; Fölling S; Greiner M
    Nature; 2009 Nov; 462(7269):74-7. PubMed ID: 19890326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum Engineering of a Low-Entropy Gas of Heteronuclear Bosonic Molecules in an Optical Lattice.
    Reichsöllner L; Schindewolf A; Takekoshi T; Grimm R; Nägerl HC
    Phys Rev Lett; 2017 Feb; 118(7):073201. PubMed ID: 28256882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cold atom dynamics in a quantum optical lattice potential.
    Maschler C; Ritsch H
    Phys Rev Lett; 2005 Dec; 95(26):260401. PubMed ID: 16486317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.